|
Showing 1 - 10 of
10 matches in All Departments
Stochastic geometry deals with models for random geometric
structures. Its early beginnings are found in playful geometric
probability questions, and it has vigorously developed during
recent decades, when an increasing number of real-world
applications in various sciences required solid mathematical
foundations. Integral geometry studies geometric mean values with
respect to invariant measures and is, therefore, the appropriate
tool for the investigation of random geometric structures that
exhibit invariance under translations or motions. Stochastic and
Integral Geometry provides the mathematically oriented reader with
a rigorous and detailed introduction to the basic stationary models
used in stochastic geometry random sets, point processes, random
mosaics and to the integral geometry that is needed for their
investigation. The interplay between both disciplines is
demonstrated by various fundamental results. A chapter on selected
problems about geometric probabilities and an outlook to
non-stationary models are included, and much additional information
is given in the section notes."
The aim of this volume is to reinforce the interaction between the
three main branches (abstract, convex and computational) of the
theory of polytopes. The articles include contributions from many
of the leading experts in the field, and their topics of concern
are expositions of recent results and in-depth analyses of the
development (past and future) of the subject. The subject matter of
the book ranges from algorithms for assignment and transportation
problems to the introduction of a geometric theory of polyhedra
which need not be convex. With polytopes as the main topic of
interest, there are articles on realizations, classifications,
Eulerian posets, polyhedral subdivisions, generalized stress, the
Brunn--Minkowski theory, asymptotic approximations and the
computation of volumes and mixed volumes. For researchers in
applied and computational convexity, convex geometry and discrete
geometry at the graduate and postgraduate levels.
Stochastic geometry deals with models for random geometric
structures. Its early beginnings are found in playful geometric
probability questions, and it has vigorously developed during
recent decades, when an increasing number of real-world
applications in various sciences required solid mathematical
foundations. Integral geometry studies geometric mean values with
respect to invariant measures and is, therefore, the appropriate
tool for the investigation of random geometric structures that
exhibit invariance under translations or motions. Stochastic and
Integral Geometry provides the mathematically oriented reader with
a rigorous and detailed introduction to the basic stationary models
used in stochastic geometry random sets, point processes, random
mosaics and to the integral geometry that is needed for their
investigation. The interplay between both disciplines is
demonstrated by various fundamental results. A chapter on selected
problems about geometric probabilities and an outlook to
non-stationary models are included, and much additional information
is given in the section notes."
At the heart of this monograph is the Brunn-Minkowski theory, which
can be used to great effect in studying such ideas as volume and
surface area and their generalizations. In particular, the notions
of mixed volume and mixed area measure arise naturally and the
fundamental inequalities that are satisfied by mixed volumes are
considered here in detail. The author presents a comprehensive
introduction to convex bodies, including full proofs for some
deeper theorems. The book provides hints and pointers to
connections with other fields and an exhaustive reference list.
This second edition has been considerably expanded to reflect the
rapid developments of the past two decades. It includes new
chapters on valuations on convex bodies, on extensions like the Lp
Brunn-Minkowski theory, and on affine constructions and
inequalities. There are also many supplements and updates to the
original chapters, and a substantial expansion of chapter notes and
references.
The aim of this volume is to reinforce the interaction between the
three main branches (abstract, convex and computational) of the
theory of polytopes. The articles include contributions from many
of the leading experts in the field, and their topics of concern
are expositions of recent results and in-depth analyses of the
development (past and future) of the subject. The subject matter of
the book ranges from algorithms for assignment and transportation
problems to the introduction of a geometric theory of polyhedra
which need not be convex. With polytopes as the main topic of
interest, there are articles on realizations, classifications,
Eulerian posets, polyhedral subdivisions, generalized stress, the
Brunn--Minkowski theory, asymptotic approximations and the
computation of volumes and mixed volumes. For researchers in
applied and computational convexity, convex geometry and discrete
geometry at the graduate and postgraduate levels.
This book provides the foundations for geometric applications of
convex cones and presents selected examples from a wide range of
topics, including polytope theory, stochastic geometry, and
Brunn-Minkowski theory. Giving an introduction to convex cones, it
describes their most important geometric functionals, such as conic
intrinsic volumes and Grassmann angles, and develops general
versions of the relevant formulas, namely the Steiner formula and
kinematic formula. In recent years questions related to convex
cones have arisen in applied mathematics, involving, for example,
properties of random cones and their non-trivial intersections. The
prerequisites for this work, such as integral geometric formulas
and results on conic intrinsic volumes, were previously scattered
throughout the literature, but no coherent presentation was
available. The present book closes this gap. It includes several
pearls from the theory of convex cones, which should be better
known.
Die von Blaschke begriindete Integralgeometrie handelt von
beweglichen Fi- guren im Raum und von invarianten Integralen, die
sich bei ihnen bilden lassen. Dieses Zitat aus Hadwiger [1957] (S.
225) beschreibt recht gut die wesentlichen Elemente der
Integralgeometrie: Es geht urn bewegte Figuren, also der Operation
einer Gruppe unterworfene geometrische Objekte, und urn invariante
Mittelwerte im Zusammenhang mit solchen bewegten Figuren.
Integralgeometrie ist also ein Teilgebiet der Geometrie, das sich
mit der Bestimmung und Anwendung von Mittelwerten geometrisch
definierter Funk- tionen beziiglich invarianter Maf3e befaBt. Zu
den Grundlagen der Integral- geometrie gehoren daher einerseits
Teile der Theorie invarianter Maf3e auf topologischen Gruppen und
homogenen Raumen, andererseits gewisse Ge- biete aus der Geometrie
der Punktmengen, wie etwa der Polyeder, konvexen Mengen oder
differenzierbaren Untermannigfaltigkeiten. Urspriinglich aus
Fragestellungen iiber geometrische Wahrscheinlichkei- ten
entstanden und von Blaschke, Chern, Hadwiger, Santal6 und anderen
ab 1935 entwickelt, hat sich die Integralgeometrie in jiingerer
Zeit als wichtiges Hilfsmittel in der Stochastischen Geometrie und
deren Anwendungsgebieten (Stereologie, Bildanalyse, raumliche
Statistik) erwiesen. Dies hat zu neuen Resultaten gefiihrt, zu
Verallgemeinerungen klassischer integralgeometrischer Formeln, aber
auch zu andersartigen Zugangen und zu neuen Gesichtspunk- ten. Das
vorliegende Buch ist sowohl klassischen Ergebnissen der
Integralgeo- metrie gewidmet als auch neueren Entwicklungen. Es
unterscheidet sich in mehrfacher Hinsicht wesentlich von den
vorhandenen Monographien.
Vom 1. bis 8. Oktober 1989 fand im Kloster Neresheim das
DMV-Seminar "Stochastische Geometrie" statt. Das Ziel dieser
Veranstaltung war es, die Stochastische Geometrie, die sich in den
letzten Jahren lebhaft entwickelt hat und die auch fur Anwendungen
in der Bildverarbeitung, der Stereologie und der Statistik von
raumlichen Daten eine grundlegende Bedeutung bekommen hat, einem
breiteren Kreis von Mathematikern nahe zu bringen. Dabei sollte
auch das Zusammenwirken geometrischer Ideen und stochastischer
Modelle exemplarisch aufgezeigt werden. Die Vortrage uber
Integralgeometrie (R. Schneider), zufallige Mengen und geometrische
Punktprozesse (W. Weil), zufallige Mosaike und Ebenenprozesse (J.
Mecke), Kenngroessen geometrischer Strukturen und Statistik von
Punktprozessen, zufalligen Mengen und Mosaiken (D. Stoyan) wurden
erganzt durch speziellere Themen (zufallige Geraden, allgemeine
Poissonprozesse, Boolesche Modelle, Punkt prozessmodelle ),
Computer-Simulationen und Fallbeispiele. Der folgende Text enthalt
die ausgearbeiteten Vortrage, wobei einige der Erganzungen
eingearbeitet wurden. Eine Einfuhrung in die Theorie allgemeiner
Poissonprozesse (J. Mecke) wurde als Anhang A aufgenommen. Es
erschien uns nicht sinnvoll, die vollstandigen Programme zu den
Simulationen abzudrucken. Wir haben aber fur einige Grundstrukturen
der Stochastischen Geome trie Simulationsprogramme als Anhang B
beigefugt. Bilder solcher Simulationen sowie Bilder von realen
geometrischen Daten und zufalligen geometrischen Strukturen aus der
Praxis sind in den Text aufgenommen worden. Die Programme stammen
in der vorliegenden Form von Herrn Dipl.-Math. H. Fallert, der auch
einen grossen Teil der Simulationen durchgefuhrt hat. Die
Reinschrift der Manuskripte wurde von Frau U. Peters vorgenommen.
Beiden 6 moechten wir an dieser Stelle fur ihre Mithilfe danken.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R205
R168
Discovery Miles 1 680
|