Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
This book contains contributions presented at the 12th International Conference on Complex Networks (CompleNet), 24-26 May 2021. CompleNet is an international conference on complex networks that brings together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. CompleNet is a venue to discuss ideas and findings about all types networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This book aims to bring together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. This volume contains contributions presented at the 11th International Conference on Complex Networks (CompleNet) in Exeter, United Kingdom, 31 March - 3 April 2020. CompleNet is a venue for discussing ideas and findings about all types of networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
The last decades have seen the emergence of Complex Networks as the language with which a wide range of complex phenomena in fields as diverse as Physics, Computer Science, and Medicine (to name just a few) can be properly described and understood. This book provides a view of the state of the art in this dynamic field and covers topics ranging from network controllability, social structure, online behavior, recommendation systems, and network structure. This book includes the peer-reviewed list of works presented at the 7th Workshop on Complex Networks CompleNet 2016 which was hosted by the Universite de Bourgogne, France, from March 23-25, 2016. The 28 carefully reviewed and selected contributions in this book address many topics related to complex networks and have been organized in seven major groups: (1) Theory of Complex Networks, (2) Multilayer networks, (3) Controllability of networks, (4) Algorithms for networks, (5) Community detection, (6) Dynamics and spreading phenomena on networks, (7) Applications of Networks.
In the last decade we have seen the emergence of a new inter-disciplinary field concentrating on the understanding large networks which are dynamic, large, open, and have a structure that borders order and randomness. The field of Complex Networks has helped us better understand many complex phenomena such as spread of decease, protein interaction, social relationships, to name but a few. The field of Complex Networks has received a major boost caused by the widespread availability of huge network data resources in the last years. One of the most surprising findings is that real networks behave very distinct from traditional assumptions of network theory. Traditionally, real networks were supposed to have a majority of nodes of about the same number of connections around an average. This is typically modeled by random graphs. But modern network research could show that the majority of nodes of real networks is very low connected, and, by contrast, there exists some nodes of very extreme connectivity (hubs). The current theories coupled with the availability of data makes the field of Complex Networks (sometimes called Network Sciences) one of the most promising interdisciplinary disciplines of today. This sample of works in this book gives as a taste of what is in the horizon such controlling the dynamics of a network and in the network, using social interactions to improve urban planning, ranking in music, and the understanding knowledge transfer in influence networks."
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommendation systems, and network structure.
This book contains contributions in the area of Network Science, presented at the 14th International Conference on Complex Networks (CompleNet), 24-28 April, 2023 in Aveiro, Portugal. CompleNet is an international conference on complex networks that brings together researchers and practitioners from diverse disciplines—from sociology, biology, physics, and computer science—who share a passion to better understand the interdependencies within and across systems.  CompleNet is a venue to discuss ideas and findings about all types networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate. The audience of the work are professionals and academics working in Network Science, a highly-multidisciplinary field.
Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].
A network is a mathematical object consisting of a set of pointsthat are connected to each other in somefashion by lines. It turns out thissimple descriptioncorresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and WorldWide Web, biological networks such as that of connections of thenervous systems, food webs or protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social and professional relationships such as friendship, sex partners, network ofHollywood actors, co-authorship networks and many more. Recent years have witnessed a substantial amount of interest within thescientific community in the properties of these networks. The emergenceof the internet in particular, coupled with the widespread availability ofinexpensive computing resources has facilitated studies ranging fromlarge scale empirical analysis of networks in the real world, to the developmentof theoretical models and tools to explore the various properties of these systems.The study of networks is broadly interdisciplinary and central developments haveoccurred in many fields, including mathematics, physics, computer and informationsciences, biology and the social sciences. This book brings together a collectionof cutting-edge research in the field from adiversearray of researchers ranging fromphysicists to social scientists and presents them in acoherent fashion, highlighting thestrong interconnections between the different areas. Topicsincluded are social networks and social media, opinion and innovation diffusion, biological and health-related networks, language networks, as well as network theory, community detection, or growth models for Complex Networks."
This book aims to bring together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. This volume contains contributions presented at the 11th International Conference on Complex Networks (CompleNet) in Exeter, United Kingdom, 31 March - 3 April 2020. CompleNet is a venue for discussing ideas and findings about all types of networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This book collects the works presented at the 8th International Conference on Complex Networks (CompleNet) 2017 in Dubrovnik, Croatia, on March 21-24, 2017. CompleNet aims at bringing together researchers and practitioners working in areas related to complex networks. The past two decades has witnessed an exponential increase in the number of publications within this field. From biological systems to computer science, from economic to social systems, complex networks are becoming pervasive in many fields of science. It is this interdisciplinary nature of complex networks that CompleNet aims at addressing. The last decades have seen the emergence of complex networks as the language with which a wide range of complex phenomena in fields as diverse as physics, computer science, and medicine (to name a few) can be properly described and understood. This book provides a view of the state-of-the-art in this dynamic field and covers topics such as network controllability, social structure, online behavior, recommendation systems, and network structure.
The last decades have seen the emergence of Complex Networks as the language with which a wide range of complex phenomena in fields as diverse as Physics, Computer Science, and Medicine (to name just a few) can be properly described and understood. This book provides a view of the state of the art in this dynamic field and covers topics ranging from network controllability, social structure, online behavior, recommendation systems, and network structure. This book includes the peer-reviewed list of works presented at the 7th Workshop on Complex Networks CompleNet 2016 which was hosted by the Universite de Bourgogne, France, from March 23-25, 2016. The 28 carefully reviewed and selected contributions in this book address many topics related to complex networks and have been organized in seven major groups: (1) Theory of Complex Networks, (2) Multilayer networks, (3) Controllability of networks, (4) Algorithms for networks, (5) Community detection, (6) Dynamics and spreading phenomena on networks, (7) Applications of Networks.
A network is a mathematical object consisting of a set of points that are connected to each other in some fashion by lines. It turns out this simple description corresponds to a bewildering array of systems in the real world, ranging from technological ones such as the Internet and World Wide Web, biological networks such as that of connections of the nervous systems, food webs or protein interactions, infrastructural systems such as networks of roads, airports or the power-grid, to patterns of social and professional relationships such as friendship, sex partners, network of Hollywood actors, co-authorship networks and many more. Recent years have witnessed a substantial amount of interest within the scientific community in the properties of these networks. The emergence of the internet in particular, coupled with the widespread availability of inexpensive computing resources has facilitated studies ranging from large scale empirical analysis of networks in the real world, to the development of theoretical models and tools to explore the various properties of these systems. The study of networks is broadly interdisciplinary and central developments have occurred in many fields, including mathematics, physics, computer and information sciences, biology and the social sciences. This book brings together a collection of cutting-edge research in the field from a diverse array of researchers ranging from physicists to social scientists and presents them in a coherent fashion, highlighting the strong interconnections between the different areas. Topics included are social networks and social media, opinion and innovation diffusion, biological and health-related networks, language networks, as well as network theory, community detection, or growth models for Complex Networks.
In the last decade we have seen the emergence of a new inter-disciplinary field concentrating on the understanding large networks which are dynamic, large, open, and have a structure that borders order and randomness. The field of Complex Networks has helped us better understand many complex phenomena such as spread of decease, protein interaction, social relationships, to name but a few. The field of Complex Networks has received a major boost caused by the widespread availability of huge network data resources in the last years. One of the most surprising findings is that real networks behave very distinct from traditional assumptions of network theory. Traditionally, real networks were supposed to have a majority of nodes of about the same number of connections around an average. This is typically modeled by random graphs. But modern network research could show that the majority of nodes of real networks is very low connected, and, by contrast, there exists some nodes of very extreme connectivity (hubs). The current theories coupled with the availability of data makes the field of Complex Networks (sometimes called Network Sciences) one of the most promising interdisciplinary disciplines of today. This sample of works in this book gives as a taste of what is in the horizon such controlling the dynamics of a network and in the network, using social interactions to improve urban planning, ranking in music, and the understanding knowledge transfer in influence networks.
Though the reductionist approachto biology and medicine has led to several imp- tant advances, further progresses with respect to the remaining challenges require integration of representation, characterization and modeling of the studied systems along a wide range of spatial and time scales. Such an approach, intrinsically - lated to systems biology, is poised to ultimately turning biology into a more precise and synthetic discipline, paving the way to extensive preventive and regenerative medicine [1], drug discovery [20] and treatment optimization [24]. A particularly appealing and effective approach to addressing the complexity of interactions inherent to the biological systems is provided by the new area of c- plex networks [34, 30, 8, 13, 12]. Basically, it is an extension of graph theory [10], focusing on the modeling, representation, characterization, analysis and simulation ofcomplexsystemsbyconsideringmanyelementsandtheirinterconnections.C- plex networks concepts and methods have been used to study disease [17], tr- scription networks [5, 6, 4], protein-protein networks [22, 36, 16, 39], metabolic networks [23] and anatomy [40].
This book contains contributions presented at the 12th International Conference on Complex Networks (CompleNet), 24-26 May 2021. CompleNet is an international conference on complex networks that brings together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. CompleNet is a venue to discuss ideas and findings about all types networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI.
This two-volume set of LNCS 11871 and 11872 constitutes the thoroughly refereed conference proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2019, held in Manchester, UK, in November 2019. The 94 full papers presented were carefully reviewed and selected from 149 submissions. These papers provided a timely sample of the latest advances in data engineering and machine learning, from methodologies, frameworks, and algorithms to applications. The core themes of IDEAL 2019 include big data challenges, machine learning, data mining, information retrieval and management, bio-/neuro-informatics, bio-inspired models (including neural networks, evolutionary computation and swarm intelligence), agents and hybrid intelligent systems, real-world applications of intelligent techniques and AI.
This book contains contributions presented at the 13th International Conference on Complex Networks (CompleNet), April 19-22, 2022. CompleNet is an international conference on complex networks that brings together researchers and practitioners from diverse disciplines-from sociology, biology, physics, and computer science-who share a passion to better understand the interdependencies within and across systems. CompleNet is a venue to discuss ideas and findings about all types of networks, from biological to technological and to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.
This book constitutes the thoroughly refereed post-conference proceedings of the Second International Workshop on Complex Networks, CompleNet 2010, which was held in Rio de Janeiro, Brazil, in October 2010. The 21 revised papers presented were carefully reviewed and selected from 48 submissions. The topics covered include: community structure, network metrics, network models, effect of topology to epidemics, algorithms to classify networks, self-organized algorithms applied to complex networks, as well as many applications of complex networks in biology, image analysis, software development, traffic congestion, language and speech, sensor networks, and synchronization.
|
You may like...
|