Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 19 of 19 matches in All Departments
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in pattern recognition and machine learning problems to build intelligent recognition systems. The articles, written by leading experts from around the world, accomplish several objectives: they provide insight into the theory of genetic algorithms; they develop pattern recognition theory in light of genetic algorithms; and they illustrate applications in artificial neural networks and fuzzy logic. The cross-sectional view of current research presented in Genetic Algorithms for Pattern Recognition makes it a unique text, ideal for graduate students and researchers.
Solving pattern recognition problems involves an enormous amount of computational effort. By applying genetic algorithms - a computational method based on the way chromosomes in DNA recombine - these problems are more efficiently and more accurately solved. Genetic Algorithms for Pattern Recognition covers a broad range of applications in science and technology, describing the integration of genetic algorithms in pattern recognition and machine learning problems to build intelligent recognition systems. The articles, written by leading experts from around the world, accomplish several objectives: they provide insight into the theory of genetic algorithms; they develop pattern recognition theory in light of genetic algorithms; and they illustrate applications in artificial neural networks and fuzzy logic. The cross-sectional view of current research presented in Genetic Algorithms for Pattern Recognition makes it a unique text, ideal for graduate students and researchers.
Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks. Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.
Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and Methodologies introduces the fundamentals and applications in the state of the art of rough fuzzy image analysis. In the first chapter, the distinguished editors explain how fuzzy, near, and rough sets provide the basis for the stages of pictorial pattern recognition: image transformation, feature extraction, and classification. The text then discusses hybrid approaches that combine fuzzy sets and rough sets in image analysis, illustrates how to perform image analysis using only rough sets, and describes tolerance spaces and a perceptual systems approach to image analysis. It also presents a free, downloadable implementation of near sets using the Near Set Evaluation and Recognition (NEAR) system, which visualizes concepts from near set theory. In addition, the book covers an array of applications, particularly in medical imaging involving breast cancer diagnosis, laryngeal pathology diagnosis, and brain MR segmentation. Edited by two leading researchers and with contributions from some of the best in the field, this volume fully reflects the diversity and richness of rough fuzzy image analysis. It deftly examines the underlying set theories as well as the diverse methods and applications.
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.
This book constitutes the proceedings of the 6th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2015, held in Warsaw, Poland, in June/July 2015. The total of 53 full papers and 1 short paper presented in this volume were carefully reviewed and selected from 90 submissions. They were organized in topical sections named: foundations of machine learning; image processing; image retrieval; image tracking; pattern recognition; data mining techniques for large scale data; fuzzy computing; rough sets; bioinformatics; and applications of artificial intelligence.
This book constitutes the refereed proceedings of the 5th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2013, held in Kolkata, India in December 2013. The 101 revised papers presented together with 9 invited talks were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on pattern recognition; machine learning; image processing; speech and video processing; medical imaging; document image processing; soft computing; bioinformatics and computational biology; and social media mining.
This book constitutes the proceedings of the First Indo-Japanese conference on Perception and Machine Intelligence, PerMIn 2012, held in Kolkata, India, in January 2012. The 41 papers, presented together with 1 keynote paper and 3 plenary papers, were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections named perception; human-computer interaction; e-nose and e-tongue; machine intelligence and application; image and video processing; and speech and signal processing.
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
This book constitutes the refereed proceedings of the Second International Conference on Pattern Recognition and Machine Intelligence, PReMI 2007, held in Kolkata, India in December 2007. The 82 revised papers presented were carefully reviewed and selected from 241 submissions. The papers are organized in topical sections on pattern recognition, image analysis, soft computing and applications, data mining and knowledge discovery, bioinformatics, signal and speech processing, document analysis and text mining, biometrics, and video analysis.
CSCR, which is the ?rst nationalcenter in the countryin this domain, has many important objectives including distance learning, establishing linkage to premier institutes/industries, organizing specialized courses, as well as conducting f- damental research. The conference proceedings of PReMI-05, containing rigorouslyreviewed - pers, is published by Springer in its prestigious Lecture Notes in Computer S- ence (LNCS) series. Di?erent professional sponsors and funding agencies (both national and international) came forward to support this event for its success. These include, International Association of Pattern Recognition (IAPR); Web IntelligenceConsortium(WIC); Institute ofElectricalandElectronics Engine- ing (IEEE): International Center for Pure and Applied Mathematics (CIMPA), France;Webel, GovernmentofWestBengalITCompany;DepartmentofScience & Technology (DST), India; Council of Scienti?c & Industrial Research (CSIR), India.Toencourageparticipationofbrightstudentsandyoungresearchers, some fellowships were provided. I believe the participants found PReMI-05 an academically memorable and intellectually stimulating event. It enabled young researchers to interact and establish contacts with well-known experts in the ?eld I hope that you have all enjoyed staying in Calcutta (now Kolkata), the city of Joy.
This book constitutes the proceedings of the 7th International Conference on Pattern Recognition and Machine Intelligence, PReMI 2017,held in Kolkata, India, in December 2017. The total of 86 full papers presented in this volume were carefully reviewed and selected from 293 submissions. They were organized in topical sections named: pattern recognition and machine learning; signal and image processing; computer vision and video processing; soft and natural computing; speech and natural language processing; bioinformatics and computational biology; data mining and big data analytics; deep learning; spatial data science and engineering; and applications of pattern recognition and machine intelligence.
This book presents fascinating, state-of-the-art research findings in the field of signal and image processing. It includes conference papers covering a wide range of signal processing applications involving filtering, encoding, classification, segmentation, clustering, feature extraction, denoising, watermarking, object recognition, reconstruction and fractal analysis. It addresses various types of signals, such as image, video, speech, non-speech audio, handwritten text, geometric diagram, ECG and EMG signals; MRI, PET and CT scan images; THz signals; solar wind speed signals (SWS); and photoplethysmogram (PPG) signals, and demonstrates how new paradigms of intelligent computing, like quantum computing, can be applied to process and analyze signals precisely and effectively. The book also discusses applications of hybrid methods, algorithms and image filters, which are proving to be better than the individual techniques or algorithms.
This book uses tutorials and new material to describe the basic concepts of soft-computing which potentially can be used in real-life sensor network applications. It is organized in a manner that exemplifies the use of an assortment of soft-computing applications for solving different problems in sensor networking. Written by worldwide experts, the chapters provide a balanced mixture of different problems concerning channel access, routing, coverage, localization, lifetime maximization and target tracking using emerging soft-computing applications.
Information on integrating soft computing techniques into video surveillance is widely scattered among conference papers, journal articles, and books. Bringing this research together in one source, Handbook on Soft Computing for Video Surveillance illustrates the application of soft computing techniques to different tasks in video surveillance. Worldwide experts in the field present novel solutions to video surveillance problems and discuss future trends. After an introduction to video surveillance systems and soft computing tools, the book gives examples of neural network-based approaches for solving video surveillance tasks and describes summarization techniques for content identification. Covering a broad spectrum of video surveillance topics, the remaining chapters explain how soft computing techniques are used to detect moving objects, track objects, and classify and recognize target objects. The book also explores advanced surveillance systems under development. Incorporating both existing and new ideas, this handbook unifies the basic concepts, theories, algorithms, and applications of soft computing. It demonstrates why and how soft computing methodologies can be used in various video surveillance problems.
Fuzzy sets, near sets, and rough sets are useful and important stepping stones in a variety of approaches to image analysis. These three types of sets and their various hybridizations provide powerful frameworks for image analysis. Emphasizing the utility of fuzzy, near, and rough sets in image analysis, Rough Fuzzy Image Analysis: Foundations and Methodologies introduces the fundamentals and applications in the state of the art of rough fuzzy image analysis. In the first chapter, the distinguished editors explain how fuzzy, near, and rough sets provide the basis for the stages of pictorial pattern recognition: image transformation, feature extraction, and classification. The text then discusses hybrid approaches that combine fuzzy sets and rough sets in image analysis, illustrates how to perform image analysis using only rough sets, and describes tolerance spaces and a perceptual systems approach to image analysis. It also presents a free, downloadable implementation of near sets using the Near Set Evaluation and Recognition (NEAR) system, which visualizes concepts from near set theory. In addition, the book covers an array of applications, particularly in medical imaging involving breast cancer diagnosis, laryngeal pathology diagnosis, and brain MR segmentation. Edited by two leading researchers and with contributions from some of the best in the field, this volume fully reflects the diversity and richness of rough fuzzy image analysis. It deftly examines the underlying set theories as well as the diverse methods and applications.
|
You may like...
The Songbird & The Heart Of Stone - The…
Carissa Broadbent
Paperback
|