![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book discusses emerging nanotechnology-based tools that have the potential to dramatically impact cancer research, diagnostics, and treatment. Cancer is a complex, devastating, and debilitating disease and, although much progress has been made, novel, more effective diagnostic and treatment options are still needed, especially for advanced cancers. The ultimate goal is to detect cancer early and non-invasively and to provide efficacious and targeted precision treatments that cause fewer harmful side effects. This book explains how nanotechnology can exploit the size-, shape-, and composition-dependent properties of nanomaterials to provide novel tools for precision cancer medicine. It will be of interest to researchers and professionals working in the fields of chemistry, biology, materials science and engineering, and medicine who want to learn more about this fascinating and fast-paced area of research.
This second edition volume provides an overview of some of the types of nanostructures commonly used in nanobiomedicine. The chapters in this book discuss practical information on the synthesis and characterization of a variety of solution-phase and surface-bound nanomaterials, with examples of how they can be used in sensing, imaging, and therapeutics. Specific topics include the synthesis and characterization of molecule and biomolecule-functionalized nanoconjugates with gold, iron oxide, or polymeric cores; the development of biosensing, imaging, and therapeutic applications of multicomponent/multifunctional nanostructures; and the application of flow cytometry in nanobiomedicine. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.< Thorough and comprehensive, Biomedical Nanotechnology: Methods and Protocols, Second Edition is a useful resource for scientists and researchers at all levels who are interested in working in a new area of nanoscience and technology, or in expanding their knowledge base in their current field.
This second edition volume provides an overview of some of the types of nanostructures commonly used in nanobiomedicine. The chapters in this book discuss practical information on the synthesis and characterization of a variety of solution-phase and surface-bound nanomaterials, with examples of how they can be used in sensing, imaging, and therapeutics. Specific topics include the synthesis and characterization of molecule and biomolecule-functionalized nanoconjugates with gold, iron oxide, or polymeric cores; the development of biosensing, imaging, and therapeutic applications of multicomponent/multifunctional nanostructures; and the application of flow cytometry in nanobiomedicine. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.< Thorough and comprehensive, Biomedical Nanotechnology: Methods and Protocols, Second Edition is a useful resource for scientists and researchers at all levels who are interested in working in a new area of nanoscience and technology, or in expanding their knowledge base in their current field.
This book discusses emerging nanotechnology-based tools that have the potential to dramatically impact cancer research, diagnostics, and treatment. Cancer is a complex, devastating, and debilitating disease and, although much progress has been made, novel, more effective diagnostic and treatment options are still needed, especially for advanced cancers. The ultimate goal is to detect cancer early and non-invasively and to provide efficacious and targeted precision treatments that cause fewer harmful side effects. This book explains how nanotechnology can exploit the size-, shape-, and composition-dependent properties of nanomaterials to provide novel tools for precision cancer medicine. It will be of interest to researchers and professionals working in the fields of chemistry, biology, materials science and engineering, and medicine who want to learn more about this fascinating and fast-paced area of research.
|
![]() ![]() You may like...
Heat Shock Proteins in Inflammatory…
Alexzander A.A. Asea, Punit Kaur
Hardcover
R5,186
Discovery Miles 51 860
|