Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Complex Automated Negotiations represent an important, emerging area in the field of Autonomous Agents and Multi-Agent Systems. Automated negotiations can be complex, since there are a lot of factors that characterize such negotiations. These factors include the number of issues, dependencies between these issues, representation of utilities, the negotiation protocol, the number of parties in the negotiation (bilateral or multi-party), time constraints, etc. Software agents can support automation or simulation of such complex negotiations on the behalf of their owners, and can provide them with efficient bargaining strategies. To realize such a complex automated negotiation, we have to incorporate advanced Artificial Intelligence technologies includes search, CSP, graphical utility models, Bayes nets, auctions, utility graphs, predicting and learning methods. Applications could include e-commerce tools, decision-making support tools, negotiation support tools, collaboration tools, etc. This book aims to provide a description of the new trends in Agent-based, Complex Automated Negotiation, based on the papers from leading researchers. Moreover, it gives an overview of the latest scientific efforts in this field, such as the platform and strategies of automated negotiating techniques.
Complex Automated Negotiations have been widely studied and are becoming an important, emerging area in the field of Autonomous Agents and Multi-Agent Systems. In general, automated negotiations can be complex, since there are a lot of factors that characterize such negotiations. These factors include the number of issues, dependency between issues, representation of utility, negotiation protocol, negotiation form (bilateral or multi-party), time constraints, etc. Software agents can support automation or simulation of such complex negotiations on the behalf of their owners, and can provide them with adequate bargaining strategies. In many multi-issue bargaining settings, negotiation becomes more than a zero-sum game, so bargaining agents have an incentive to cooperate in order to achieve efficient win-win agreements. Also, in a complex negotiation, there could be multiple issues that are interdependent. Thus, agent's utility will become more complex than simple utility functions. Further, negotiation forms and protocols could be different between bilateral situations and multi-party situations. To realize such a complex automated negotiati on, we have to incorporate advanced Artificial Intelligence technologies includes search, CSP, graphical utility models, Bays nets, auctions, utility graphs, predicting and learning methods. Applications could include e-commerce tools, decisionmaking support tools, negotiation support tools, collaboration tools, etc. These issues are explored by researchers from different communities in Autonomous Agents and Multi-Agent systems. They are, for instance, being studied in agent negotiation, multi-issue negotiations, auctions, mechanism design, electronic commerce, voting, secure protocols, matchmaking & brokering, argumentation, and co-operation mechanisms. This book is also edited from some aspects of negotiation researches including theoretical mechanism design of trading based on auctions, allocation mechanism based on negotiation among multi-agent, case-study and analysis of automated negotiations, data engineering issues in negotiations, and so on.
With an increasing number of applications in the context of multi-agent systems, automated negotiation is a rapidly growing area. Written by top researchers in the field, this state-of-the-art treatment of the subject explores key issues involved in the design of negotiating agents, covering strategic, heuristic, and axiomatic approaches. The authors discuss the potential benefits of automated negotiation as well as the unique challenges it poses for computer scientists and for researchers in artificial intelligence. They also consider possible applications and give readers a feel for the types of domains where automated negotiation is already being deployed. This book is ideal for graduate students and researchers in computer science who are interested in multi-agent systems. It will also appeal to negotiation researchers from disciplines such as management and business studies, psychology and economics.
Complex Automated Negotiations have been widely studied and are becoming an important, emerging area in the field of Autonomous Agents and Multi-Agent Systems. In general, automated negotiations can be complex, since there are a lot of factors that characterize such negotiations. These factors include the number of issues, dependency between issues, representation of utility, negotiation protocol, negotiation form (bilateral or multi-party), time constraints, etc. Software agents can support automation or simulation of such complex negotiations on the behalf of their owners, and can provide them with adequate bargaining strategies. In many multi-issue bargaining settings, negotiation becomes more than a zero-sum game, so bargaining agents have an incentive to cooperate in order to achieve efficient win-win agreements. Also, in a complex negotiation, there could be multiple issues that are interdependent. Thus, agent's utility will become more complex than simple utility functions. Further, negotiation forms and protocols could be different between bilateral situations and multi-party situations. To realize such a complex automated negotiation, we have to incorporate advanced Artificial Intelligence technologies includes search, CSP, graphical utility models, Bays nets, auctions, utility graphs, predicting and learning methods. Applications could include e-commerce tools, decision-making support tools, negotiation support tools, collaboration tools, etc. In this book, we solicit papers on all aspects of such complex automated negotiations in the field of Autonomous Agents and Multi-Agent Systems. In addition, this book includes papers on the ANAC 2010 (Automated Negotiating Agents Competition), in which automated agents who have different negotiation strategies and implemented by different developers are automatically negotiate in the several negotiation domains. ANAC is one of real testbeds in which strategies for automated negotiating agents are evaluated in a tournament style.
Complex Automated Negotiations represent an important, emerging area in the field of Autonomous Agents and Multi-Agent Systems. Automated negotiations can be complex, since there are a lot of factors that characterize such negotiations. These factors include the number of issues, dependencies between these issues, representation of utilities, the negotiation protocol, the number of parties in the negotiation (bilateral or multi-party), time constraints, etc. Software agents can support automation or simulation of such complex negotiations on the behalf of their owners, and can provide them with efficient bargaining strategies. To realize such a complex automated negotiation, we have to incorporate advanced Artificial Intelligence technologies includes search, CSP, graphical utility models, Bayes nets, auctions, utility graphs, predicting and learning methods. Applications could include e-commerce tools, decision-making support tools, negotiation support tools, collaboration tools, etc. This book aims to provide a description of the new trends in Agent-based, Complex Automated Negotiation, based on the papers from leading researchers. Moreover, it gives an overview of the latest scientific efforts in this field, such as the platform and strategies of automated negotiating techniques.
Complex Automated Negotiations have been widely studied and are becoming an important, emerging area in the field of Autonomous Agents and Multi-Agent Systems. In general, automated negotiations can be complex, since there are a lot of factors that characterize such negotiations. These factors include the number of issues, dependency between issues, representation of utility, negotiation protocol, negotiation form (bilateral or multi-party), time constraints, etc. Software agents can support automation or simulation of such complex negotiations on the behalf of their owners, and can provide them with adequate bargaining strategies. In many multi-issue bargaining settings, negotiation becomes more than a zero-sum game, so bargaining agents have an incentive to cooperate in order to achieve efficient win-win agreements. Also, in a complex negotiation, there could be multiple issues that are interdependent. Thus, agent's utility will become more complex than simple utility functions. Further, negotiation forms and protocols could be different between bilateral situations and multi-party situations. To realize such a complex automated negotiation, we have to incorporate advanced Artificial Intelligence technologies includes search, CSP, graphical utility models, Bays nets, auctions, utility graphs, predicting and learning methods. Applications could include e-commerce tools, decision-making support tools, negotiation support tools, collaboration tools, etc. In this book, we solicit papers on all aspects of such complex automated negotiations in the field of Autonomous Agents and Multi-Agent Systems. In addition, this book includes papers on the ANAC 2010 (Automated Negotiating Agents Competition), in which automated agents who have different negotiation strategies and implemented by different developers are automatically negotiate in the several negotiation domains. ANAC is one of real testbeds in which strategies for automated negotiating agents are evaluated in a tournament style.
Complex Automated Negotiations have been widely studied and are becoming an important, emerging area in the field of Autonomous Agents and Multi-Agent Systems. In general, automated negotiations can be complex, since there are a lot of factors that characterize such negotiations. These factors include the number of issues, dependency between issues, representation of utility, negotiation protocol, negotiation form (bilateral or multi-party), time constraints, etc. Software agents can support automation or simulation of such complex negotiations on the behalf of their owners, and can provide them with adequate bargaining strategies. In many multi-issue bargaining settings, negotiation becomes more than a zero-sum game, so bargaining agents have an incentive to cooperate in order to achieve efficient win-win agreements. Also, in a complex negotiation, there could be multiple issues that are interdependent. Thus, agent's utility will become more complex than simple utility functions. Further, negotiation forms and protocols could be different between bilateral situations and multi-party situations. To realize such a complex automated negotiati on, we have to incorporate advanced Artificial Intelligence technologies includes search, CSP, graphical utility models, Bays nets, auctions, utility graphs, predicting and learning methods. Applications could include e-commerce tools, decisionmaking support tools, negotiation support tools, collaboration tools, etc. These issues are explored by researchers from different communities in Autonomous Agents and Multi-Agent systems. They are, for instance, being studied in agent negotiation, multi-issue negotiations, auctions, mechanism design, electronic commerce, voting, secure protocols, matchmaking & brokering, argumentation, and co-operation mechanisms. This book is also edited from some aspects of negotiation researches including theoretical mechanism design of trading based on auctions, allocation mechanism based on negotiation among multi-agent, case-study and analysis of automated negotiations, data engineering issues in negotiations, and so on.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|