Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book examines the signal processing perspective in haptic teleoperation systems. This text covers the topics of prediction, estimation, architecture, data compression and error correction that can be applied to haptic teleoperation systems. The authors begin with an overview of haptic teleoperation systems, then look at a Bayesian approach to haptic teleoperation systems. They move onto a discussion of haptic data compression, haptic data digitization and forward error correction.
Visual Tracking in Conventional Minimally Invasive Surgery introduces the various tools and methodologies that can be used to enhance a conventional surgical setup with some degree of automation. The main focus of this book is on methods for tracking surgical tools and how they can be used to assist the surgeon during the surgical operation. Various notions associated with surgeon-computer interfaces and image-guided navigation are explored, with a range of experimental results. The book starts with some basic motivations for minimally invasive surgery and states the various distinctions between robotic and non-robotic (conventional) versions of this procedure. Common components of this type of operation are presented with a review of the literature addressing the automation aspects of such a setup. Examples of tracking results are shown for both motion and gesture recognition of surgical tools, which can be used as part of the surgeon-computer interface. In the case of marker-less tracking, where no special visual markers can be added to the surgical tools, the tracking results are divided into two types of methodology, depending on the nature and the estimate of the visual noise. Details of the tracking methods are presented using standard Kalman filters and particle filters. The last part of the book provides approaches for tracking a region on the surgical scene defined by the surgeon. Examples of how these tracking approaches can be used as part of image-guided navigation are demonstrated. This book is designed for control engineers interested in visual tracking, computer vision researchers and system designers involved with surgical automation, as well as surgeons, biomedical engineers, and robotic researchers.
Within the past twenty years, the field of robotics has been finding many areas of applications ranging from space to underwater explo rations. One of these areas which is slowly gaining popularity among the users group is the notion of service robotics. This book is an in vestigation and exploration of engineering principles in the design and development of mechanisms and robotic devices that can be used in the field of surgery. Specifically the results of this book can be used for designing tools for class of Minimally Invasive Surgery (MIS). Generally, Minimal Invasive Surgery (MIS), e. g. laparoscopic surgery, is performed by using long surgical tools, that are inserted through small incisions at the ports of entry to the body (e. g. abdominal wall) for reaching the surgical site. The main drawback of current designs of en doscopic tools is that they are not able to extend all the movements and sensory capabilities of the surgeon's hand to the surgical site. By im proving surgical procedures, training, and more practice, it is possible for surgeons to reduce completion time for each task and increase their level of skill. However, even in the best cases the level of performance of a surgeon in Minimally Invasive Surgery is still a fraction of the con ventional surgery. Any dramatically improvement is usually driven by introduction of new tools or systems that in turn bring totally new pro cedures and set of skills."
This book examines the signal processing perspective in haptic teleoperation systems. This text covers the topics of prediction, estimation, architecture, data compression and error correction that can be applied to haptic teleoperation systems. The authors begin with an overview of haptic teleoperation systems, then look at a Bayesian approach to haptic teleoperation systems. They move onto a discussion of haptic data compression, haptic data digitization and forward error correction.
Within the past twenty years, the field of robotics has been finding many areas of applications ranging from space to underwater explo rations. One of these areas which is slowly gaining popularity among the users group is the notion of service robotics. This book is an in vestigation and exploration of engineering principles in the design and development of mechanisms and robotic devices that can be used in the field of surgery. Specifically the results of this book can be used for designing tools for class of Minimally Invasive Surgery (MIS). Generally, Minimal Invasive Surgery (MIS), e. g. laparoscopic surgery, is performed by using long surgical tools, that are inserted through small incisions at the ports of entry to the body (e. g. abdominal wall) for reaching the surgical site. The main drawback of current designs of en doscopic tools is that they are not able to extend all the movements and sensory capabilities of the surgeon's hand to the surgical site. By im proving surgical procedures, training, and more practice, it is possible for surgeons to reduce completion time for each task and increase their level of skill. However, even in the best cases the level of performance of a surgeon in Minimally Invasive Surgery is still a fraction of the con ventional surgery. Any dramatically improvement is usually driven by introduction of new tools or systems that in turn bring totally new pro cedures and set of skills.
Visual Tracking in Conventional Minimally Invasive Surgery introduces the various tools and methodologies that can be used to enhance a conventional surgical setup with some degree of automation. The main focus of this book is on methods for tracking surgical tools and how they can be used to assist the surgeon during the surgical operation. Various notions associated with surgeon-computer interfaces and image-guided navigation are explored, with a range of experimental results. The book starts with some basic motivations for minimally invasive surgery and states the various distinctions between robotic and non-robotic (conventional) versions of this procedure. Common components of this type of operation are presented with a review of the literature addressing the automation aspects of such a setup. Examples of tracking results are shown for both motion and gesture recognition of surgical tools, which can be used as part of the surgeon-computer interface. In the case of marker-less tracking, where no special visual markers can be added to the surgical tools, the tracking results are divided into two types of methodology, depending on the nature and the estimate of the visual noise. Details of the tracking methods are presented using standard Kalman filters and particle filters. The last part of the book provides approaches for tracking a region on the surgical scene defined by the surgeon. Examples of how these tracking approaches can be used as part of image-guided navigation are demonstrated. This book is designed for control engineers interested in visual tracking, computer vision researchers and system designers involved with surgical automation, as well as surgeons, biomedical engineers, and robotic researchers.
|
You may like...
|