Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This volume contains the proceedings of the conference "Casimir Force, Casimir Operators and the Riemann Hypothesis - Mathematics for Innovation in Industry and Science" held in November 2009 in Fukuoka (Japan). The motive for the conference was the celebration of the 100th birthday of Casimir and the 150th birthday of the Riemann hypothesis. The conference focused on the following topics: Casimir operators in harmonic analysis and representation theory Number theory, in particular zeta functions and cryptography Casimir force in physics and its relation with nano-science Mathematical biology Importance of mathematics for innovation in industry The latter topic was inspired both by the call for innovation in industry worldwide and by the fact that Casimir, who was the director of Philips research for a long time in his career, had an outspoken opinion on the importance of fundamental science for industry. These proceedings are of interest both to research mathematicians and to those interested in the role science, and in particular mathematics, can play in innovation in industry.
In this volume the author further develops his philosophy of quantum interpolation between the real numbers and the p-adic numbers. The p-adic numbers contain the p-adic integers Zp which are the inverse limit of the finite rings Z/pn. This gives rise to a tree, and probability measures w on Zp correspond to Markov chains on this tree. From the tree structure one obtains special basis for the Hilbert space L2(Zp, w). The real analogue of the p-adic integers is the interval -1,1], and a probability measure w on it gives rise to a special basis for L2( -1,1], w) - the orthogonal polynomials, and to a Markov chain on "finite approximations" of -1,1]. For special (gamma and beta) measures there is a "quantum" or "q-analogue" Markov chain, and a special basis, that within certain limits yield the real and the p-adic theories. This idea can be generalized variously. In representation theory, it is the quantum general linear group GLn(q)that interpolates between the p-adic group GLn(Zp), and between its real (and complex) analogue -the orthogonal On (and unitary Un )groups. There is a similar quantum interpolation between the real and p-adic Fourier transform and between the real and p-adic (local unramified part of) Tate thesis, and Weil explicit sums.
|
You may like...
|