Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 6 of 6 matches in All Departments
This book introduces readers to the biology of leukemia stem cells (LSCs) and emphasizes the necessity and importance of targeting LSCs in the treatment of hematopoietic malignancies. It addresses the role of leukemia stem cells in different leukemia diseases and molecular signatures, as well as the metabolic and epigenetic regulation of leukemia stem cell function. With regard to solid tumors, a significant number of blood cancers are believed to be derived from leukemia stem cells (LSCs), which are responsible for disease progression, relapse and drug resistance. Consequently, new therapeutic strategies need to be developed by focusing on the complete eradication of LSCs. Given its scope, the book offers a valuable asset for graduate students and scientists in the fields of cell biology and cancer research etc.
This volume highlights the molecular and cellular methods used in studying Chronic Myeloid Leukimia (CML) pathogenesis and stem cell biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Chronic Myeloid Leukemia: Methods and Protocols aims to ensure successful results in the further study of this vital field.
DNA microarray technology has become a useful technique in gene expression analysis for the development of new diagnostic tools and for the identification of disease genes and therapeutic targets for human cancers. Appropriate control for DNA microarray experiment and reliable analysis of the array data are key to performing the assay and utilizing the data correctly. The most difficult challenge has been the lack of a powerful method to analyze the data for all genes (more than 30,000 genes) simultaneously and to use the microarray data in a decision-making process. In this book, the authors describe DNA microarray technology and data analysis by pointing out current advantages and disadvantages of the technique and available analytical methods. Crucially, new ideas and analytical methods based on the authors' own experience in DNA microarray study and analysis are introduced. It is believed that this new way of interpreting and analyzing microarray data will bring us closer to success in decision-making using the information obtained through the DNA microarray technology.
This volume highlights the molecular and cellular methods used in studying Chronic Myeloid Leukimia (CML) pathogenesis and stem cell biology. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Chronic Myeloid Leukemia: Methods and Protocols aims to ensure successful results in the further study of this vital field.
In this book, Dr. Li and his author team plan to emphasize why mouse models are useful in vivo systems for understanding disease mechanisms and developing therapeutic strategies in blood cancers. The authors do not intend to cover all types of blood cancers; instead, they will focus on some major ones such as leukemias and lymphomas. However, the authors will try to cover as much as they can the cancer types and point out that many blood cancers need to be studied in mouse disease models although they are still not available at present. A major focus in the book will be to show what we can or cannot learn from mouse disease models and to also show the critical contributions of mouse models in therapeutic drug development.
This book introduces readers to the biology of leukemia stem cells (LSCs) and emphasizes the necessity and importance of targeting LSCs in the treatment of hematopoietic malignancies. It addresses the role of leukemia stem cells in different leukemia diseases and molecular signatures, as well as the metabolic and epigenetic regulation of leukemia stem cell function. With regard to solid tumors, a significant number of blood cancers are believed to be derived from leukemia stem cells (LSCs), which are responsible for disease progression, relapse and drug resistance. Consequently, new therapeutic strategies need to be developed by focusing on the complete eradication of LSCs. Given its scope, the book offers a valuable asset for graduate students and scientists in the fields of cell biology and cancer research etc.
|
You may like...
|