0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (2)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Hardcover, 1st ed. 2022): Kyle Robert... Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Hardcover, 1st ed. 2022)
Kyle Robert Harrison, Saber Elsayed, Ivan Leonidovich Garanovich, Terence Weir, Sharon G. Boswell, …
R3,987 Discovery Miles 39 870 Ships in 10 - 15 working days

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Paperback, 1st ed. 2022): Kyle Robert... Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling (Paperback, 1st ed. 2022)
Kyle Robert Harrison, Saber Elsayed, Ivan Leonidovich Garanovich, Terence Weir, Sharon G. Boswell, …
R3,992 Discovery Miles 39 920 Ships in 18 - 22 working days

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Busy Puppies
Yi-Hsuan Wu Board book R215 R195 Discovery Miles 1 950
Man's Search For Meaning
Victor E. Frankl Paperback  (4)
R230 R213 Discovery Miles 2 130
HAVIT H2232d Esports RGB Gaming Headset
R379 R285 Discovery Miles 2 850
Concise Art of Seduction
Robert Greene Paperback  (4)
R278 Discovery Miles 2 780
Sunshine for the Soul
Garrison Jean Jessica Hardcover R404 Discovery Miles 4 040
How to Get Published in the Best…
Marijke Breuning, John Ishiyama Paperback R703 Discovery Miles 7 030
Rotring A3 Profile Drawing Board
 (1)
R2,042 Discovery Miles 20 420
Witchcraft for Healing - Radical…
Patti Wigington Hardcover R598 R552 Discovery Miles 5 520
Practical Guide to Low Voltage Directive
Gregg Kervill Hardcover R2,030 Discovery Miles 20 300
Wicca Book of Shadows - A Beginner's…
Lisa Chamberlain Hardcover R579 Discovery Miles 5 790

 

Partners