Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
The textbook Geometry, published in French by CEDICjFernand Nathan and in English by Springer-Verlag (scheduled for 1985) was very favorably re ceived. Nevertheless, many readers found the text too concise and the exercises at the end of each chapter too difficult, and regretted the absence of any hints for the solution of the exercises. This book is intended to respond, at least in part, to these needs. The length of the textbook (which will be referred to as B] throughout this book) and the volume of the material covered in it preclude any thought of publishing an expanded version, but we considered that it might prove both profitable and amusing to some of our readers to have detailed solutions to some of the exercises in the textbook. At the same time, we planned this book to be independent, at least to a certain extent, from the textbook; thus, we have provided summaries of each of its twenty chapters, condensing in a few pages and under the same titles the most important notions and results, used in the solution of the problems. The statement of the selected problems follows each summary, and they are numbered in order, with a reference to the corresponding place in B]. These references are not meant as indications for the solutions of the problems. In the body of each summary there are frequent references to B], and these can be helpful in elaborating a point which is discussed too cursorily in this book."
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds."
This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds."
Image processing is concerned with the analysis and manipulation of images by computer. Providing a thorough treatment of image processing with an emphasis on those aspects most used in computer graphics, the authors concentrate on describing and analyzing the underlying concepts rather than on presenting algorithms or pseudocode. As befits a modern introduction to this topic, a good balance is struck between discussing the underlying mathematics and the main topics: signal processing, data discretization, the theory of colour and different colour systems, operations in images, dithering and half-toning, warping and morphing and image processing. This second edition reflects recent trends in science andtechnology that exploit image processing in computer graphics and vision applications. Stochastic image models and statistical methods for image processing are covered as are: A modern approach and new developments in the area, Probability theory for image processing, Applications in image analysis and computer vision.
This book consists of two parts, different in form but similar in spirit. The first, which comprises chapters 0 through 9, is a revised and somewhat enlarged version of the 1972 book Geometrie Differentielle. The second part, chapters 10 and 11, is an attempt to remedy the notorious absence in the original book of any treatment of surfaces in three-space, an omission all the more unforgivable in that surfaces are some of the most common geometrical objects, not only in mathematics but in many branches of physics. Geometrie Differentielle was based on a course I taught in Paris in 1969- 70 and again in 1970-71. In designing this course I was decisively influ enced by a conversation with Serge Lang, and I let myself be guided by three general ideas. First, to avoid making the statement and proof of Stokes' formula the climax of the course and running out of time before any of its applications could be discussed. Second, to illustrate each new notion with non-trivial examples, as soon as possible after its introduc tion. And finally, to familiarize geometry-oriented students with analysis and analysis-oriented students with geometry, at least in what concerns manifolds."
This version differs from the Portuguese edition only in a few additions and many minor corrections. Naturally, this edition raised the question of whether to use the opportunity to introduce major additions. In a book like this, ending in the heart of a rich research field, there are always further topics that should arguably be included. Subjects like geodesic flows or the role of Hausdorff dimension in con temporary ergodic theory are two of the most tempting gaps to fill. However, I let it stand with practically the same boundaries as the original version, still believing these adequately fulfill its goal of presenting the basic knowledge required to approach the research area of Differentiable Ergodic Theory. I wish to thank Dr. Levy for the excellent translation and several of the correc tions mentioned above. Rio de Janeiro, January 1987 Ricardo Mane Introduction This book is an introduction to ergodic theory, with emphasis on its relationship with the theory of differentiable dynamical systems, which is sometimes called differentiable ergodic theory. Chapter 0, a quick review of measure theory, is included as a reference. Proofs are omitted, except for some results on derivatives with respect to sequences of partitions, which are not generally found in standard texts on measure and integration theory and tend to be lost within a much wider framework in more advanced texts."
The textbook Geometry, published in French by CEDICjFernand Nathan and in English by Springer-Verlag (scheduled for 1985) was very favorably re ceived. Nevertheless, many readers found the text too concise and the exercises at the end of each chapter too difficult, and regretted the absence of any hints for the solution of the exercises. This book is intended to respond, at least in part, to these needs. The length of the textbook (which will be referred to as B] throughout this book) and the volume of the material covered in it preclude any thought of publishing an expanded version, but we considered that it might prove both profitable and amusing to some of our readers to have detailed solutions to some of the exercises in the textbook. At the same time, we planned this book to be independent, at least to a certain extent, from the textbook; thus, we have provided summaries of each of its twenty chapters, condensing in a few pages and under the same titles the most important notions and results, used in the solution of the problems. The statement of the selected problems follows each summary, and they are numbered in order, with a reference to the corresponding place in B]. These references are not meant as indications for the solutions of the problems. In the body of each summary there are frequent references to B], and these can be helpful in elaborating a point which is discussed too cursorily in this book."
In recent years topology has firmly established itself as an important part of the physicist's mathematical arsenal. Topology has profound relevance to quantum field theory-for example, topological nontrivial solutions of the classical equa tions of motion (solitons and instantons) allow the physicist to leave the frame work of perturbation theory. The significance of topology has increased even further with the development of string theory, which uses very sharp topologi cal methods-both in the study of strings, and in the pursuit of the transition to four-dimensional field theories by means of spontaneous compactification. Im portant applications of topology also occur in other areas of physics: the study of defects in condensed media, of singularities in the excitation spectrum of crystals, of the quantum Hall effect, and so on. Nowadays, a working knowledge of the basic concepts of topology is essential to quantum field theorists; there is no doubt that tomorrow this will also be true for specialists in many other areas of theoretical physics. The amount of topological information used in the physics literature is very large. Most common is homotopy theory. But other subjects also play an important role: homology theory, fibration theory (and characteristic classes in particular), and also branches of mathematics that are not directly a part of topology, but which use topological methods in an essential way: for example, the theory of indices of elliptic operators and the theory of complex manifolds."
This is Volume II of a two-volume introductory text in classical algebra. The text moves methodically with numerous examples and details so that readers with some basic knowledge of algebra can read it without difficulty. It is recommended either as a textbook for some particular algebraic topic or as a reference book for consultations in a selected fundamental branch of algebra. The book contains a wealth of material. Amongst the topics covered in Volume are the theory of ordered fields and Nullstellen Theorems. Known researcher Lorenz also includes the fundamentals of the theory of quadratic forms, of valuations, local fields and modules. What's more, the book contains some lesser known or nontraditional results - for instance, Tsen's results on the solubility of systems of polynomial equations with a sufficiently large number of indeterminates.
From Math Reviews: "This is a charming textbook, introducing the reader to the classical parts of algebra. The exposition is admirably clear and lucidly written with only minimal prerequisites from linear algebra. The new concepts are, at least in the first part of the book, defined in the framework of the development of carefully selected problems. Thus, for instance, the transformation of the classical geometrical problems on constructions with ruler and compass in their algebraic setting in the first chapter introduces the reader spontaneously to such fundamental algebraic notions as field extension, the degree of an extension, etc... The book ends with an appendix containing exercises and notes on the previous parts of the book. However, brief historical comments and suggestions for further reading are also scattered through the text."
Flavors of Geometry is a volume of lectures on four geometrically-influenced fields of mathematics that have experienced great development in recent years. Growing out of a series of introductory lectures given at the Mathematical Sciences Research Institute in January 1995 and January 1996, the book presents chapters by masters in their respective fields on hyperbolic geometry, dynamics in several complex variables, convex geometry, and volume estimation. Each lecture begins with a discussion of elementary concepts, examines the highlights of the field, and concludes with a look at more advanced material. The style and presentation of the chapters are clear and accessible, and most of the lectures are richly illustrated. Bibiliographies and indexes are included to encourage further reading on the topics discussed.
The purpose of this book is to revive some of the beautiful results obtained by various geometers of the 19th century, and to give its readers a taste of concrete algebraic geometry. A good deal of space is devoted to cross-ratios, conics, quadrics, and various interesting curves and surfaces. The fundamentals of projective geometry are efficiently dealt with by using a modest amount of linear algebra. An axiomatic characterization of projective planes is also given. While the topology of projective spaces over real and complex fields is described, and while the geometry of the complex projective libe is applied to the study of circles and Moebius transformations, the book is not restricted to these fields. Interesting properties of projective spaces, conics, and quadrics over finite fields are also given. This book is the first volume in the Readings in Mathematics sub-series of the UTM. From the reviews: "...The book of P. Samuel thus fills a gap in the literature. It is a little jewel. Starting from a minimal background in algebra, he succeeds in 160 pages in giving a coherent exposition of all of projective geometry. ... one reads this book like a novel. " D.Lazard in Gazette des Mathematiciens#1
This book develops some of the extraordinary richness, beauty, and power of geometry in two and three dimensions, and the strong connection of geometry with topology. Hyperbolic geometry is the star. A strong effort has been made to convey not just denatured formal reasoning (definitions, theorems, and proofs), but a living feeling for the subject. There are many figures, examples, and exercises of varying difficulty. This book was the origin of a grand scheme developed by Thurston that is now coming to fruition. In the 1920s and 1930s the mathematics of two-dimensional spaces was formalized. It was Thurston's goal to do the same for three-dimensional spaces. To do this, he had to establish the strong connection of geometry to topology--the study of qualitative questions about geometrical structures. The author created a new set of concepts, and the expression "Thurston-type geometry" has become a commonplace. "Three-Dimensional Geometry and Topology" had its origins in the form of notes for a graduate course the author taught at Princeton University between 1978 and 1980. Thurston shared his notes, duplicating and sending them to whoever requested them. Eventually, the mailing list grew to more than one thousand names. The book is the culmination of two decades of research and has become the most important and influential text in the field. Its content also provided the methods needed to solve one of mathematics' oldest unsolved problems--the Poincare Conjecture. In 2005 Thurston won the first AMS Book Prize, for "Three-dimensional Geometry and Topology." The prize recognizes an outstanding research book that makes a seminal contribution to the research literature. Thurston received the Fields Medal, the mathematical equivalent of the Nobel Prize, in 1982 for the depth and originality of his contributions to mathematics. In 1979 he was awarded the Alan T. Waterman Award, which recognizes an outstanding young researcher in any field of science or engineering supported by the National Science Foundation."
|
You may like...
Life at Rock Surfaces - Challenged by…
Burkhard Budel, Thomas Friedl
Hardcover
Atlas - The Story Of Pa Salt
Lucinda Riley, Harry Whittaker
Paperback
|