Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 15 of 15 matches in All Departments
Blockchain and artificial intelligence (AI) in industrial internet of things is an emerging field of research at the intersection of information science, computer science, and electronics engineering. The radical digitization of industry coupled with the explosion of the internet of things (IoT) has set up a paradigm shift for industrial and manufacturing companies. There exists a need for a comprehensive collection of original research of the best performing methods and state-of-the-art approaches in this area of blockchain, AI, and the industrial internet of things in this new era for industrial and manufacturing companies. Blockchain and AI Technology in the Industrial Internet of Things compares different approaches to the industrial internet of things and explores the direct impact blockchain and AI technology have on the betterment of the human life. The chapters provide the latest advances in the field and provide insights and concerns on the concept and growth of the industrial internet of things. While including research on security and privacy, supply chain management systems, performance analysis, and a variety of industries, this book is ideal for professionals, researchers, managers, technologists, security analysts, executives, practitioners, researchers, academicians, and students looking for advanced research and information on the newest technologies, advances, and approaches for blockchain and AI in the industrial internet of things.
The Internet of Medical Things (IoMT) allows clinicians to monitor patients remotely via a network of wearable or implantable devices. The devices are embedded with software or sensors to enable them to send and receive data via the internet so that healthcare professionals can monitor health data such as vital statistics, metabolic rates or drug delivery regimens, and can provide advice or treatment plans based on this real-world, real-time data. This edited book discusses key IoT technologies that facilitate and enhance this process, such as computer algorithms, network architecture, wireless communications, and network security. Providing a systemic review of trends, challenges and future directions of IoMT technologies, the book examines applications such as breast cancer monitoring systems, patient-centric systems for handling, tracking and monitoring virus variants, and video-based solutions for monitoring babies. The book discusses machine learning techniques for the management of clinical data and includes security issues such as the use of blockchain technology. Written by a range of international researchers, this book is a great resource for computer engineering researchers and practitioners in the fields of data mining, machine learning, artificial intelligence and the IoT in the healthcare sector.
This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine-firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine-wavelet (SVM-Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.
Artificial Intelligence for Neurological Disorders provides a comprehensive resource of state-of-the-art approaches for AI, big data analytics and machine learning-based neurological research. The book discusses many machine learning techniques to detect neurological diseases at the cellular level, as well as other applications such as image segmentation, classification and image indexing, neural networks and image processing methods. Chapters include AI techniques for the early detection of neurological disease and deep learning applications using brain imaging methods like EEG, MEG, fMRI, fNIRS and PET for seizure prediction or neuromuscular rehabilitation. The goal of this book is to provide readers with broad coverage of these methods to encourage an even wider adoption of AI, Machine Learning and Big Data Analytics for problem-solving and stimulating neurological research and therapy advances.
Discusses deep learning, IOT, machine learning, and biomedical data analysis with broad coverage of basic scientific applications Presents deep learning and the tremendous improvement in accuracy, robustness, and cross-language generalizability it has over conventional approaches Discusses various techniques of IOT systems for healthcare data analytics Provides state-of-the-art methods of deep learning, machine learning and IoT in biomedical and health informatics Focuses more on the application of algorithms in various real life biomedical and engineering problems
This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. In the past, it was a common requirement to have domain experts for developing models for biomedical or healthcare. However, recent advances in representation learning algorithms allow us to automatically learn the pattern and representation of the given data for the development of such models. Medical Image Mining, a novel research area (due to its large amount of medical images) are increasingly generated and stored digitally. These images are mainly in the form of: computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new and useful information that can be helpful for scientists and biomedical practitioners. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence..
Wireless Sensor Networks and the Internet of Things: Future Directions and Applications explores a wide range of important and real-time issues and applications in this ever-advancing field. Different types of WSN and IoT technologies are discussed in order to provide a strong framework of reference, and the volume places an emphasis on solutions to the challenges of protection, conservation, evaluation, and implementation of WSN and IoT that lead to low-cost products, energy savings, low carbon usage, higher quality, and global competitiveness. The volume is divided into four sections that cover: Wireless sensor networks and their relevant applications Smart monitoring and control systems with the Internet of Things Attacks, threats, vulnerabilities, and defensive measures for smart systems Research challenges and opportunities This collection of chapters on an important and diverse range of issues presents case studies and applications of cutting-edge technologies of WSN and IoT that will be valuable for academic communities in computer science, information technology, and electronics, including cyber security, monitoring, and data collection. The informative material presented here can be applied to many sectors, including agriculture, energy and power, resource management, biomedical and health care, business management, and others.
Wireless Sensor Networks and the Internet of Things: Future Directions and Applications explores a wide range of important and real-time issues and applications in this ever-advancing field. Different types of WSN and IoT technologies are discussed in order to provide a strong framework of reference, and the volume places an emphasis on solutions to the challenges of protection, conservation, evaluation, and implementation of WSN and IoT that lead to low-cost products, energy savings, low carbon usage, higher quality, and global competitiveness. The volume is divided into four sections that cover: Wireless sensor networks and their relevant applications Smart monitoring and control systems with the Internet of Things Attacks, threats, vulnerabilities, and defensive measures for smart systems Research challenges and opportunities This collection of chapters on an important and diverse range of issues presents case studies and applications of cutting-edge technologies of WSN and IoT that will be valuable for academic communities in computer science, information technology, and electronics, including cyber security, monitoring, and data collection. The informative material presented here can be applied to many sectors, including agriculture, energy and power, resource management, biomedical and health care, business management, and others.
Cloud Computing and Big Data technologies have become the new descriptors of the digital age. The global amount of digital data has increased more than nine times in volume in just five years and by 2030 its volume may reach a staggering 65 trillion gigabytes. This explosion of data has led to opportunities and transformation in various areas such as healthcare, enterprises, industrial manufacturing and transportation. New Cloud Computing and Big Data tools endow researchers and analysts with novel techniques and opportunities to collect, manage and analyze the vast quantities of data. In Cloud and Big Data Analytics, the two areas of Swarm Intelligence and Deep Learning are a developing type of Machine Learning techniques that show enormous potential for solving complex business problems. Deep Learning enables computers to analyze large quantities of unstructured and binary data and to deduce relationships without requiring specific models or programming instructions. This book introduces the state-of-the-art trends and advances in the use of Machine Learning in Cloud and Big Data Analytics. The book will serve as a reference for Data Scientists, systems architects, developers, new researchers and graduate level students in Computer and Data science. The book will describe the concepts necessary to understand current Machine Learning issues, challenges and possible solutions as well as upcoming trends in Big Data Analytics.
Implementation of Smart Healthcare Systems using AI, IoT, and Blockchain provides imperative research on the development of data fusion and analytics for healthcare and their implementation into current issues in a real-time environment. While highlighting IoT, bio-inspired computing, big data, and evolutionary programming, the book explores various concepts and theories of data fusion, IoT, and Big Data Analytics. It also investigates the challenges and methodologies required to integrate data from multiple heterogeneous sources, analytical platforms in healthcare sectors. This book is unique in the way that it provides useful insights into the implementation of a smart and intelligent healthcare system in a post-Covid-19 world using enabling technologies like Artificial Intelligence, Internet of Things, and blockchain in providing transparent, faster, secure and privacy preserved healthcare ecosystem for the masses.
This book comprehensively covers the topic of COVID-19 and other pandemics and epidemics data analytics using computational modelling. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care. The new era of pandemics and epidemics bring tremendous opportunities and challenges due to the plentiful and easily available medical data allowing for further analysis. The aim of pandemics and epidemics research is to ensure high-quality, efficient healthcare, better treatment and quality of life by efficiently analyzing the abundant medical, and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. In the past, it was a common requirement to have domain experts for developing models for biomedical or healthcare. However, recent advances in representation learning algorithms allow us to automatically learn the pattern and representation of the given data for the development of such models. Medical Image Mining, a novel research area (due to its large amount of medical images) are increasingly generated and stored digitally. These images are mainly in the form of: computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new and useful information that can be helpful for scientists and biomedical practitioners. Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis will play a vital role in improving human life in response to pandemics and epidemics. The state-of-the-art approaches for data mining-based medical and health related applications will be of great value to researchers and practitioners working in biomedical, health informatics, and artificial intelligence..
This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine-firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine-wavelet (SVM-Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.
AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming.
Blockchain and artificial intelligence (AI) in industrial internet of things is an emerging field of research at the intersection of information science, computer science, and electronics engineering. The radical digitization of industry coupled with the explosion of the internet of things (IoT) has set up a paradigm shift for industrial and manufacturing companies. There exists a need for a comprehensive collection of original research of the best performing methods and state-of-the-art approaches in this area of blockchain, AI, and the industrial internet of things in this new era for industrial and manufacturing companies. Blockchain and AI Technology in the Industrial Internet of Things compares different approaches to the industrial internet of things and explores the direct impact blockchain and AI technology have on the betterment of the human life. The chapters provide the latest advances in the field and provide insights and concerns on the concept and growth of the industrial internet of things. While including research on security and privacy, supply chain management systems, performance analysis, and a variety of industries, this book is ideal for professionals, researchers, managers, technologists, security analysts, executives, practitioners, researchers, academicians, and students looking for advanced research and information on the newest technologies, advances, and approaches for blockchain and AI in the industrial internet of things.
|
You may like...
The Fundamentals of Modern Statistical…
Nan M Laird, Christoph Lange
Hardcover
R3,286
Discovery Miles 32 860
Rank and Pseudo-Rank Procedures for…
Edgar Brunner, Arne C Bathke, …
Hardcover
R3,611
Discovery Miles 36 110
Mathematical and Statistical Estimation…
Gerardo Chowell, James M. Hayman, …
Hardcover
R5,018
Discovery Miles 50 180
Statistical Modelling of Survival Data…
Il Do Ha, Jong-Hyeon Jeong, …
Hardcover
R4,260
Discovery Miles 42 600
Bootstrap Methods - With Applications in…
Gerhard Dikta, Marsel Scheer
Hardcover
R3,052
Discovery Miles 30 520
Applied Probability - From Random…
Valerie Girardin, Nikolaos Limnios
Hardcover
R2,214
Discovery Miles 22 140
|