0
Your cart

Your cart is empty

Books > Professional & Technical > Energy technology & engineering > Electrical engineering

Buy Now

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing (Hardcover, 1st ed. 2021) Loot Price: R4,928
Discovery Miles 49 280
Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing (Hardcover, 1st ed. 2021): Sujata Dash, Subhendu...

Advanced Soft Computing Techniques in Data Science, IoT and Cloud Computing (Hardcover, 1st ed. 2021)

Sujata Dash, Subhendu Kumar Pani, Ajith Abraham, Yulan Liang

Series: Studies in Big Data, 89

 (sign in to rate)
Loot Price R4,928 Discovery Miles 49 280 | Repayment Terms: R462 pm x 12*

Bookmark and Share

Expected to ship within 12 - 17 working days

This book plays a significant role in improvising human life to a great extent. The new applications of soft computing can be regarded as an emerging field in computer science, automatic control engineering, medicine, biology application, natural environmental engineering, and pattern recognition. Now, the exemplar model for soft computing is human brain. The use of various techniques of soft computing is nowadays successfully implemented in many domestic, commercial, and industrial applications due to the low-cost and very high-performance digital processors and also the decline price of the memory chips. This is the main reason behind the wider expansion of soft computing techniques and its application areas. These computing methods also play a significant role in the design and optimization in diverse engineering disciplines. With the influence and the development of the Internet of things (IoT) concept, the need for using soft computing techniques has become more significant than ever. In general, soft computing methods are closely similar to biological processes than traditional techniques, which are mostly based on formal logical systems, such as sentential logic and predicate logic, or rely heavily on computer-aided numerical analysis. Soft computing techniques are anticipated to complement each other. The aim of these techniques is to accept imprecision, uncertainties, and approximations to get a rapid solution. However, recent advancements in representation soft computing algorithms (fuzzy logic,evolutionary computation, machine learning, and probabilistic reasoning) generate a more intelligent and robust system providing a human interpretable, low-cost, approximate solution. Soft computing-based algorithms have demonstrated great performance to a variety of areas including multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, biomedical and health informatics, etc. Soft computing approaches such as genetic programming (GP), support vector machine-firefly algorithm (SVM-FFA), artificial neural network (ANN), and support vector machine-wavelet (SVM-Wavelet) have emerged as powerful computational models. These have also shown significant success in dealing with massive data analysis for large number of applications. All the researchers and practitioners will be highly benefited those who are working in field of computer engineering, medicine, biology application, signal processing, and mechanical engineering. This book is a good collection of state-of-the-art approaches for soft computing-based applications to various engineering fields. It is very beneficial for the new researchers and practitioners working in the field to quickly know the best performing methods. They would be able to compare different approaches and can carry forward their research in the most important area of research which has direct impact on betterment of the human life and health. This book is very useful because there is no book in the market which provides a good collection of state-of-the-art methods of soft computing-based models for multimedia retrieval, fault tolerance, system modelling, network architecture, Web semantics, big data analytics, time series, and biomedical and health informatics.

General

Imprint: Springer Nature Switzerland AG
Country of origin: Switzerland
Series: Studies in Big Data, 89
Release date: November 2021
First published: 2021
Editors: Sujata Dash • Subhendu Kumar Pani • Ajith Abraham • Yulan Liang
Dimensions: 235 x 155mm (L x W)
Format: Hardcover
Pages: 434
Edition: 1st ed. 2021
ISBN-13: 978-3-03-075656-7
Categories: Books > Professional & Technical > Energy technology & engineering > Electrical engineering > General
Books > Computing & IT > Applications of computing > Databases > General
Books > Computing & IT > Applications of computing > Artificial intelligence > General
LSN: 3-03-075656-4
Barcode: 9783030756567

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

Partners