0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Algorithms for Data Science (Hardcover, 1st ed. 2016): Brian Steele, John Chandler, Swarna Reddy Algorithms for Data Science (Hardcover, 1st ed. 2016)
Brian Steele, John Chandler, Swarna Reddy
R2,866 R2,700 Discovery Miles 27 000 Save R166 (6%) Ships in 9 - 15 working days

This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.

Algorithms for Data Science (Paperback, Softcover reprint of the original 1st ed. 2016): Brian Steele, John Chandler, Swarna... Algorithms for Data Science (Paperback, Softcover reprint of the original 1st ed. 2016)
Brian Steele, John Chandler, Swarna Reddy
R1,618 R1,226 Discovery Miles 12 260 Save R392 (24%) Ships in 12 - 17 working days

This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts:(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
The Creator
John David Washington, Gemma Chan, … DVD R312 Discovery Miles 3 120
Bantex @School White Glue with…
 (1)
R12 Discovery Miles 120
Huntlea Koletto - Bolster Pet Bed (Kale…
R695 R479 Discovery Miles 4 790
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Nintendo Joy-Con Neon Controller Pair…
R1,899 R1,729 Discovery Miles 17 290
Kiddylicious Crispie Tiddlers…
R23 R20 Discovery Miles 200
Loot
Nadine Gordimer Paperback  (2)
R383 R310 Discovery Miles 3 100
Mellerware Swiss - Plastic Floor Fan…
 (1)
R348 Discovery Miles 3 480
Fly Repellent ShooAway (Black)
 (6)
R299 R179 Discovery Miles 1 790
Man Alone - Mandela's Top Cop, Exposing…
Caryn Dolley Paperback R310 R225 Discovery Miles 2 250

 

Partners