Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book presents breakthroughs in the design of Wireless Energy Harvesting (WEH) networks. It bridges the gap between WEH through radio waves communications and power transfer, which have largely been designed separately. The authors present an overview of the RF-EHNs including system architecture and RF energy harvesting techniques and existing applications. They also cover the idea of WEH in novel discoveries of information, the theoretical bounds in WEH, wireless sensor networks, usage of modern channel coding together with WEH, energy efficient resource allocation mechanisms, distributed self-organized energy efficient designs, delay-energy trade-off, specific protocols for energy efficient communication designs, D2D communication and energy efficiency, cooperative wireless networks, and cognitive networks.
The latest advances in several emerging technologies such as AI, blockchain, privacy-preserving algorithms used in localization and positioning systems, cloud computing and computer vision all have great potential in facilitating social distancing. Benefits range from supporting people to work from home to monitoring micro- and macro- movements such as contact tracing apps using Bluetooth, tracking the movement and transportation level of a city and wireless positioning systems to help people keep a safe distance by alerting them when they are too close to each other or to avoid congestion. However, implementing such technologies in practical scenarios still faces various challenges. This book aims to lay the foundations of how these technologies could be adopted to realize and facilitate social distancing to better manage pandemics and future outbreaks. Starting with basic concepts, models and practical technology-based social distancing scenarios, the authors present enabling wireless technologies and solutions which could be widely adopted to encourage social distancing. They include symptom prediction, detection and monitoring of quarantined people and contact tracing. In the future, smart infrastructures for next-generation wireless systems should incorporate a pandemic mode in their standard architecture and design.
One of the crucial challenges for future smart cities is to devise a citywide network infrastructure capable of effectively guaranteeing resource-efficient and reliable communications while managing the complexity of heterogeneous devices and access technologies. This edited book highlights and showcases state of the art research and innovations in 5G and beyond wireless communications technologies for connected smart cities. The main objectives of this work include the exploration of recent advances and application potentials of various communication technologies as promising enablers for future networked smart cities, the investigation of design-specific issues for the integration of different architectural components of smart cities, and addressing various challenges and identifying opportunities in terms of interoperability of potential solutions. The book is aimed at a core and interdisciplinary audience of engineers, researchers and professionals working on smart cities concepts and supporting the integration of next-generation information, communication, networking and sensing technologies. It will also be a very useful ancillary for advanced students and other professionals working on next-generation communication networks.
Understand both uncoded and coded caching techniques in future wireless network design. Expert authors present new techniques that will help you to improve backhaul, load minimization, deployment cost reduction, security, energy efficiency and the quality of the user experience. Covering topics from high-level architectures to specific requirement-oriented caching design and analysis, including big-data enabled caching, caching in cloud-assisted 5G networks, and security, this is an essential resource for academic researchers, postgraduate students and engineers working in wireless communications.
Recent technological advances have made possible the creation of a chain of non-geostationary satellite orbit (NGSO) communications systems. Such systems offer the advantages of ubiquity, relatively low costs, and upgradable infrastructure that enables the use of innovative on-board technologies. This evolution opens up a plethora of opportunities for massive self-organized, reconfigurable and resilient NGSO constellations, which can operate as a global network. Ambitious low-orbit constellation types are currently being developed, motivated by advanced communication technologies and cheaper launch costs. These emerging architectures require accurate system orchestration involving different research domains including wireless communications, spectrum management, dynamic antenna and tracking systems, inter-satellite links and routing strategies. This edited book presents a broad overview of the research in NGSO constellations for future satellite communication network design including key technologies and architectures and specific use-case-oriented communications design and analysis. The book will be of interest to academic researchers and scientists, communication engineers and industrial actors in satcom, satellite networking and mobile and wireless communication. It will also serve as a useful reference for advanced students and postdocs and lecturers in satellite communication and networking and mobile and wireless communication.
|
You may like...
|