Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 8 of 8 matches in All Departments
This book reports on cutting-edge modeling techniques, methodologies and tools used to understand, design and engineer nanoscale communication systems, such as molecular communication systems. Moreover, it includes introductory materials for those who are new to the field. The book's interdisciplinary approach, which merges perspectives in computer science, the biological sciences and nanotechnology, will appeal to graduate students and researchers in these three areas.The book is organized into five parts, the first of which describes the fundamentals of molecular communication, including basic concepts, models and designs. In turn, the second part examines specific types of molecular communication found in biological systems, such as neuronal communication in the brain. The book continues by exploring further types of nanoscale communication, such as fluorescence resonance energy transfer and electromagnetic-based nanoscale communication, in the third part, and by describing nanomaterials and structures for practical applications in the fourth. Lastly, the book presents nanomedical applications such as targeted drug delivery and biomolecular sensing.
This book reports on cutting-edge modeling techniques, methodologies and tools used to understand, design and engineer nanoscale communication systems, such as molecular communication systems. Moreover, it includes introductory materials for those who are new to the field. The book's interdisciplinary approach, which merges perspectives in computer science, the biological sciences and nanotechnology, will appeal to graduate students and researchers in these three areas.The book is organized into five parts, the first of which describes the fundamentals of molecular communication, including basic concepts, models and designs. In turn, the second part examines specific types of molecular communication found in biological systems, such as neuronal communication in the brain. The book continues by exploring further types of nanoscale communication, such as fluorescence resonance energy transfer and electromagnetic-based nanoscale communication, in the third part, and by describing nanomaterials and structures for practical applications in the fourth. Lastly, the book presents nanomedical applications such as targeted drug delivery and biomolecular sensing.
This book describes the main ideas, methods, results and resources relevant to the study of bionanosensor networks. Its primary goal is to spark application-oriented studies of molecular communication; that is, to investigate how collections of bionanosensors, referred to here as bionanosensor networks, can be used for practical purposes such as nanomedical sensing. In particular, the book focuses on two key functionalities for nanomedical applications: target detection and target tracking. Bionanosensor networks represent a new interdisciplinary research area that expands the traditional area of network engineering by incorporating the latest advances in bionanotechnology. These networks consist of spatially distributed bionanosensors that are engineered with the help of bionanotechnology. As a research area, bionanosensor networks are aimed at designing robust networks on the basis of spatially distributed bionanosensors, as well as at developing innovative applications of those networks.
This book constitutes the thoroughly refereed post-conference proceedings of the 6th International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (Bionetics). The event took place in the city of York, UK, in December 2011. Bionetics main objective is to bring bio-inspired paradigms into computer engineering and networking, and to enhance the fruitful interactions between these fields and biology. The papers of the conference were accepted in 2 categories: full papers and work-in progress. Full papers describe significant advances in the Bionetics field, while work-in-progress papers present an opportunity to discuss breaking research which is currently being evaluated. The topics are ranging from robotic coordination to attack detection in peer-to-peer networks, biological mechanisms including evolution, flocking and artificial immune systems, and nano-scale communication and networking.
This book constitutes the thoroughly refereed post-conference proceedings of the 5th International ICST Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2010) which was held in Boston, USA, in December 2010. The 78 revised full papers were carefully reviewed and selected from numerous submissions for inclusion in the proceedings. BIONETICS 2010 aimed to provide the understanding of the fundamental principles and design strategies in biological systems and leverage those understandings to build bio-inspired systems.
This book constitutes the refereed conference proceedings of the 13th International Conference on Bio-inspired Information and Communications Technologies, held in September 2021. Due to the safety concerns and travel restrictions caused by COVID-19, BICT 2021 took place online in a live stream. BICT 2021 aims to provide a world-leading and multidisciplinary venue for researchers and practitioners in diverse disciplines that seek the understanding of key principles, processes and mechanisms in biological systems and leverage those understandings to develop novel information and communications technologies (ICT). The 20 full and 2 short papers were carefully reviewed and selected from 47 submissions. The papers are organized thematically in tracks as follows: Bio-inspired network systems and applications; Bio-inspired information and communication; mathematical modelling and simulations of biological systems.
This book constitutes the refereed conference proceedings of the 12th International Conference on Bio-inspired Information and Communications Technologies, held in Shanghai, China, in July 2020. Due to the safety concerns and travel restrictions caused by COVID-19, BICT 2020 took place online in a live stream. BICT 2020 aims to provide a world-leading and multidisciplinary venue for researchers and practitioners in diverse disciplines that seek the understanding of key principles, processes and mechanisms in biological systems and leverage those understandings to develop novel information and communications technologies (ICT). The 20 full and 8 short papers were carefully revied and selected from 56 submissions. In addition to the main track targeting broad and mainstream research topics, BICT 2020 includes four special tracks with focused research topics on internet of everything, intelligent internet of things and network applications, intelligent sensor network, and data-driven intelligent modeling, application and optimization.
This comprehensive guide, by pioneers in the field, brings together, for the first time, everything a new researcher, graduate student or industry practitioner needs to get started in molecular communication. Written with accessibility in mind, it requires little background knowledge, and provides a detailed introduction to the relevant aspects of biology and information theory, as well as coverage of practical systems. The authors start by describing biological nanomachines, the basics of biological molecular communication and the microorganisms that use it. They then proceed to engineered molecular communication and the molecular communication paradigm, with mathematical models of various types of molecular communication and a description of the information and communication theory of molecular communication. Finally, the practical aspects of designing molecular communication systems are presented, including a review of the key applications. Ideal for engineers and biologists looking to get up to speed on the current practice in this growing field.
|
You may like...
|