0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (2)
  • R2,500 - R5,000 (2)
  • R5,000 - R10,000 (1)
  • -
Status
Brand

Showing 1 - 5 of 5 matches in All Departments

Tight and Taut Submanifolds (Hardcover, New): Thomas E. Cecil, Shiing-shen Chern Tight and Taut Submanifolds (Hardcover, New)
Thomas E. Cecil, Shiing-shen Chern
R3,661 R2,642 Discovery Miles 26 420 Save R1,019 (28%) Ships in 12 - 17 working days

Tight and taut manifolds form an important and special class of surfaces within differential geometry. This book contains in-depth articles by experts in the field as well as an extensive and comprehensive bibliography. This survey will open new avenues for further research and will be an important addition to any geometer's library.

Geometry of Hypersurfaces (Hardcover, 1st ed. 2015): Thomas E. Cecil, Patrick J. Ryan Geometry of Hypersurfaces (Hardcover, 1st ed. 2015)
Thomas E. Cecil, Patrick J. Ryan
R3,754 Discovery Miles 37 540 Ships in 12 - 17 working days

This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.

Geometry of Hypersurfaces (Paperback, Softcover reprint of the original 1st ed. 2015): Thomas E. Cecil, Patrick J. Ryan Geometry of Hypersurfaces (Paperback, Softcover reprint of the original 1st ed. 2015)
Thomas E. Cecil, Patrick J. Ryan
R5,682 Discovery Miles 56 820 Ships in 10 - 15 working days

This exposition provides the state-of-the art on the differential geometry of hypersurfaces in real, complex, and quaternionic space forms. Special emphasis is placed on isoparametric and Dupin hypersurfaces in real space forms as well as Hopf hypersurfaces in complex space forms. The book is accessible to a reader who has completed a one-year graduate course in differential geometry. The text, including open problems and an extensive list of references, is an excellent resource for researchers in this area. Geometry of Hypersurfaces begins with the basic theory of submanifolds in real space forms. Topics include shape operators, principal curvatures and foliations, tubes and parallel hypersurfaces, curvature spheres and focal submanifolds. The focus then turns to the theory of isoparametric hypersurfaces in spheres. Important examples and classification results are given, including the construction of isoparametric hypersurfaces based on representations of Clifford algebras. An in-depth treatment of Dupin hypersurfaces follows with results that are proved in the context of Lie sphere geometry as well as those that are obtained using standard methods of submanifold theory. Next comes a thorough treatment of the theory of real hypersurfaces in complex space forms. A central focus is a complete proof of the classification of Hopf hypersurfaces with constant principal curvatures due to Kimura and Berndt. The book concludes with the basic theory of real hypersurfaces in quaternionic space forms, including statements of the major classification results and directions for further research.

Tight and Taut Submanifolds (Paperback): Thomas E. Cecil, Shiing-shen Chern Tight and Taut Submanifolds (Paperback)
Thomas E. Cecil, Shiing-shen Chern
R1,255 Discovery Miles 12 550 Ships in 12 - 17 working days

First published in 1997, this book contains six in-depth articles on various aspects of the field of tight and taut submanifolds and concludes with an extensive bibliography of the entire field. The book is dedicated to the memory of Nicolaas H. Kuiper; the first paper is an unfinished but insightful survey of the field of tight immersions and maps written by Kuiper himself. Other papers by leading researchers in the field treat topics such as the smooth and polyhedral portions of the theory of tight immersions, taut, Dupin and isoparametric submanifolds of Euclidean space, taut submanifolds of arbitrary complete Riemannian manifolds, and real hypersurfaces in complex space forms with special curvature properties. Taken together these articles provide a comprehensive survey of the field and point toward several directions for future research.

Lie Sphere Geometry - With Applications to Submanifolds (Paperback, 2nd ed. 2008): Thomas E. Cecil Lie Sphere Geometry - With Applications to Submanifolds (Paperback, 2nd ed. 2008)
Thomas E. Cecil
R2,069 Discovery Miles 20 690 Ships in 10 - 15 working days

Thomas Cecil is a math professor with an unrivalled grasp of Lie Sphere Geometry. Here, he provides a clear and comprehensive modern treatment of the subject, as well as its applications to the study of Euclidean submanifolds. It begins with the construction of the space of spheres, including the fundamental notions of oriented contact, parabolic pencils of spheres, and Lie sphere transformations. This new edition contains revised sections on taut submanifolds, compact proper Dupin submanifolds, reducible Dupin submanifolds, and the cyclides of Dupin. Completely new material on isoparametric hypersurfaces in spheres and Dupin hypersurfaces with three and four principal curvatures is also included. The author surveys the known results in these fields and indicates directions for further research and wider application of the methods of Lie sphere geometry.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Ghosts and Legends of Nevada's Highway…
Janice Oberding Paperback R482 R401 Discovery Miles 4 010
Texas Boomtowns: - A History of Blood…
Bartee Haile Paperback R548 R461 Discovery Miles 4 610
Now You Know How Mapetla Died - The…
Zikhona Valela Paperback R330 R284 Discovery Miles 2 840
Hoe Ek Dit Onthou
Francois Van Coke, Annie Klopper Paperback R300 R219 Discovery Miles 2 190
Our National Monuments - America's…
Q. T. Luong Hardcover R1,666 R1,404 Discovery Miles 14 040
The Year Of Facing Fire - A Memoir
Helena Kriel Paperback R315 R271 Discovery Miles 2 710
Huntington Beach Chronicles - The Heart…
Chris Epting Paperback R494 R415 Discovery Miles 4 150
Vegetarian Sheet Pan Cooking
Liz Franklin Paperback R120 Discovery Miles 1 200
Kemah
Pepper Coffey, The Kemah Historical Society Paperback R605 R504 Discovery Miles 5 040
Call Sign Chaos - Learning To Lead
Jim Mattis, Bing West Hardcover  (1)
R609 R477 Discovery Miles 4 770

 

Partners