Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
We live in a well-engineered universe. This engineering is present in every system and organism in existence, including in the actions and interactions of plants and animals. In fact, one could say that the function and movement of plants and animals is just as much a part of their makeup as chlorophyll and fiber or bone and blood. Consequently, if we want to understand the ecology of animals and plants especially in an integrated ecosystem, it follows that great insight can be gained by taking an approach that studies function and integration of parts rather than the individual parts themselves. Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants offers a collection of state-of-the-art papers that ingeniously demonstrates how biomechanics can provide novel insights into long standing ecological and evolutionary questions. The majority of the book's chapters were originally presented at a symposium held at the annual meeting of the Society for Experimental Biology in Edinburgh, U.K., in 2004. Combining approaches from various disciplines, this volume covers subjects that encompass theoretical concepts and practical approaches involving research on both plants and animals, as well as interactions between the two. Although most of the examples emphasize distinct organism-environment relationships such as the grazing of ruminants, the book also includes a few examples that span larger temporal and spatial scales, achieving wider application across ecosystems. This can be seen in the chapter Implications of Microbial Motility on the Water Column Ecosystems, which highlights how microbial ecosystems can be understood from the mechanics, morphology, and motile responses of the individual organisms. Designed to serve as a reference for students and researchers, Ecology and Biomechanics: A Mechanical Approach to the Ecology of Animals and Plants paves the way for further research.
This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.
Was haben Business und Bakterien gemeinsam? Beide koennen uber eine Zeit hinweg exponentiell wachsen, aber irgendwann reicht der "Nahrstoff" nicht mehr und das System bricht scheinbar ploetzlich zusammen. Die aktuelle Finanzkrise ist ein gutes Beispiel dafur. In Wirtschaft und Politik werden mit Alphatieren, Adlern oder Amoeben gerne Bezuge zur Natur hergestellt. Symbiose, Schwarmbildung oder Evolution dienen als Analogien fur Management, Marketing und Unternehmensstrategien. Warum ist das so? OEkonomie und Natur haben mehr gemein, als man auf den ersten Blick vermuten moechte: In beiden Systemen spielen Prinzipien wie Wettbewerb, Organisation, Kooperation, Kundenansprache und Ressourcenmanagement gleichermassen eine bedeutende Rolle. Die Beitrage in dem Buch zeigen in anschaulicher und unterhaltsamer Weise, warum die Grundgesetze der Evolution auch fur die kulturelle Evolution des Menschen gelten - und wie Wirtschaft von der Natur lernen kann.
Nature has always been a source of inspiration for the design of the human environment. The analysis of biological constructions can not only lead to astonishing technical solutions but can also inspire the design of architecture. Bionics is a fascinating border area between pure research and practical application: biologists, chemists, physicists, mineralogists, and paleontologists meet up with material scientists, engineers, and architects and transfer their knowledge to architecture and construction. Using numerous practical examples, this richly illustrated introduction traces the process from the understanding of how something functions, to abstraction—for example in computer models—and the construction of initial prototypes, through to fully functional manufacture and production.
Nature has always been a source of inspiration for the design of the human environment. The analysis of biological constructions can not only lead to astonishing technical solutions but can also inspire the design of architecture. Bionics is a fascinating border area between pure research and practical application: biologists, chemists, physicists, mineralogists, and paleontologists meet up with material scientists, engineers, and architects and transfer their knowledge to architecture and construction. Using numerous practical examples, this richly illustrated introduction traces the process from the understanding of how something functions, to abstraction—for example in computer models—and the construction of initial prototypes, through to fully functional manufacture and production.
|
You may like...
|