|
|
Showing 1 - 3 of
3 matches in All Departments
Successfully navigating the data-driven economy presupposes a
certain understanding of the technologies and methods to gain
insights from Big Data. This book aims to help data science
practitioners to successfully manage the transition to Big Data.
Building on familiar content from applied econometrics and business
analytics, this book introduces the reader to the basic concepts of
Big Data Analytics. The focus of the book is on how to productively
apply econometric and machine learning techniques with large,
complex data sets, as well as on all the steps involved before
analysing the data (data storage, data import, data preparation).
The book combines conceptual and theoretical material with the
practical application of the concepts using R and SQL. The reader
will thus acquire the skills to analyse large data sets, both
locally and in the cloud. Various code examples and tutorials,
focused on empirical economic and business research, illustrate
practical techniques to handle and analyse Big Data. Key Features:
- Includes many code examples in R and SQL, with R/SQL scripts
freely provided online. - Extensive use of real datasets from
empirical economic research and business analytics, with data files
freely provided online. - Leads students and practitioners to think
critically about where the bottlenecks are in practical data
analysis tasks with large data sets, and how to address them. The
book is a valuable resource for data science practitioners,
graduate students and researchers who aim to gain insights from big
data in the context of research questions in business, economics,
and the social sciences.
Successfully navigating the data-driven economy presupposes a
certain understanding of the technologies and methods to gain
insights from Big Data. This book aims to help data science
practitioners to successfully manage the transition to Big Data.
Building on familiar content from applied econometrics and business
analytics, this book introduces the reader to the basic concepts of
Big Data Analytics. The focus of the book is on how to productively
apply econometric and machine learning techniques with large,
complex data sets, as well as on all the steps involved before
analysing the data (data storage, data import, data preparation).
The book combines conceptual and theoretical material with the
practical application of the concepts using R and SQL. The reader
will thus acquire the skills to analyse large data sets, both
locally and in the cloud. Various code examples and tutorials,
focused on empirical economic and business research, illustrate
practical techniques to handle and analyse Big Data. Key Features:
- Includes many code examples in R and SQL, with R/SQL scripts
freely provided online. - Extensive use of real datasets from
empirical economic research and business analytics, with data files
freely provided online. - Leads students and practitioners to think
critically about where the bottlenecks are in practical data
analysis tasks with large data sets, and how to address them. The
book is a valuable resource for data science practitioners,
graduate students and researchers who aim to gain insights from big
data in the context of research questions in business, economics,
and the social sciences.
Die Verbreitung des Internets und die zunehmende Digitalisierung in
der oeffentlichen Verwaltung und Politik haben uber die letzten
Jahre zu einer starken Zunahme an hochdetaillierten digitalen
Datenbestanden uber politische Akteure und Prozesse gefuhrt. Diese
big public data werden oft uber programmatische Schnittstellen (Web
APIs; programmable Web) verbreitet, um die Einbettung der Daten in
anderen Webanwendungen zu vereinfachen. Die Analyse dieser Daten
fur wissenschaftliche Zwecke in der politischen OEkonomie und
Politologie ist vielversprechend, setzt jedoch die Implementierung
einer data pipeline zur Beschaffung und Aufbereitung von Daten aus
dem programmable Web voraus. Dieses Buch diskutiert die Chancen und
Herausforderungen der praktischen Nutzung dieser Datenbestande fur
die empirische Forschung und zeigt anhand einer Fallstudie ein
moegliches Vorgehen zur systematischen Analyse von big public data
aus dem programmable Web auf.
|
You may like...
Loot
Nadine Gordimer
Paperback
(2)
R367
R340
Discovery Miles 3 400
|