Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 13 of 13 matches in All Departments
In this XVII Course of the International School of Cosmology and Gravitation devoted to "ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS" we have considered different aspects of the influence of gravity on quantum systems. In order to achieve this aim, in many lectures, seminars and discussions we have strengthened the interplay between gravity and quantum systems starting from the situation in the early universe based on astrophysical observations, up to the earthly based experiments with atom interferometry for probing the structure of space-time. Thus we have had timely lectures on the quantum field and horizon of a black hole including reviews of the problem of black holes thermodynamics and entropy, quantum information, quantum black holes, quantum evaporation and Hawking radiation, recent advances in stockastic gravity. We have also discussed quantum fluctuations in inflationary universe, quantum effects and reheating after inflation, and superplanckian energies in Hawking radiation. In this regard the subject of spinors in purely affine space-time and Dirac matter according to Weyl in the generalized theory of gravitation were developed . The dualism between space-time and matter has been deeply analyzed in order to see why, for general relativity, this is an obstacle for quantization of the theory. Also canonical Gravity and Mach's principle, torsion and curvature as commutator for Quantum Gravity and Dirac Geometry of real space-time were analysed, together with the problem of 5-Dimensional Projective Unified Field theory and Multidimensional Gravity and Cosmology.
The basic subjects and main topics covered by this book are: (1) Physics of Black Holes (classical and quantum); (2) Thermodynamics, entropy and internal dynamics; (3) Creation of particles and evaporation; (4) Mini black holes; (5) Quantum mechanics of black holes in curved spacetime; (6) The role of spin and torsion in the black hole physics; (7) Equilibrium geometry and membrane paradigm; (8) Black hole in string and superstring theory; (9) Strings, quantum gravity and black holes; (10) The problem of singularity; (11) Astrophysics of black holes; (12) Observational evidence of black holes. The book reveals the deep connection between gravitational, quantum and statistical physics and also the importance of black hole behaviour in the very early universe. An important new point discussed concerns the introduction of spin in the physics of black holes, showing its central role when correctly put into the Einstein equations through the geometric concept of torsion, with the new concept of a time-temperature uncertainty relation, minimal time, minimal entropy, quantization of entropy and the connection of black hole with wormholes. Besides theoretical aspects, the reader will also find observational evidence for black holes in active galactic nuclei, in binary X-ray sources and in supernova remnants. The book will thus interest physicists, astronomers, and astrophysicists at different levels of their career who specialize in classical properties, quantum processes, statistical thermodynamics, numerical collapse, observational evidence, general relativity and other related problems.
An up-to-date description of progress and current problems with the
gravitational constant, both in terms of generalized gravitational
theories and experiments either in the laboratory, using Casimir
force measurements, or in space at solar system distances and in
cosmological observations.
In recent years there has been a steadily increasing cross-fertilization between cosmology and particle physics, on both the theoretical and experimental levels. Particle physics has provided new experimental data from the big accelerators in operation, and data from space satellites are accumulating rapidly. Cosmology is still one of the best laboratories for testing particle theory. The present work discusses such matters in the context of inflation, strings, dark matter, neutrinos and gravitational wave physics in the very early universe, field theory at the Planck scale, and high energy physics. A particular emphasis has been placed on a new topology for spatial infinity, on the relation between temperature and gravitational potential, a canonical formulation of general relativity, the neutrino mass, spin in the early universe, the measurement of gravity in the 10--100 m range, galaxy--galaxy and cluster--cluster correlation, black holes, string theory and string/string duality. The work also presents a beautiful review of high energy elementary particle physics, treating the meaning, status and perspectives of unification and standard model gauge couplings.
Peter Gabriel Bergmann started his work on general relativity in 1936 when he moved from Prague to the Institute for Advanced Study in Princeton. Bergmann collaborated with Einstein in an attempt to provide a geometrical unified field theory of gravitation and electromagnetism. Within this program they wrote two articles together: A. Einstein and P. G. Bergmann, Ann. Math. 39, 685 (1938) ; and A. Einstein, V. Bargmann and P. G. Bergmann, Th. von Karman Anniversary Volume 212 (1941). The search for such a theory was intense in the ten years following the birth of general relativity. In recent years, some of the geometrical ideas proposed in these publications have proved essential in contemporary attempts towards the unification of all interactions including gravity, Kaluza-Klein type theories and supergravity theories. In 1942, Bergmann published the book "Introduction to the Theory of Relativity" which included a foreword by Albert Einstein. This book is a reference for the subject, either as a textbook for classroom use or for individual study. A second corrected and enlarged edition of the book was published in 1976. Einstein said in his foreword to the first edition: "Bergmann's book seems to me to satisfy a definite need. . . Much effort has gone into making this book logically and pedagogically satisfactory and Bergmann has spent many hours with me which were devoted to this end.
Proceedings of the NATO Advanced Study Institute, Erice, Italy, May 2-12, 1987
Peter Gabriel Bergmann started his work on general relativity in 1936 when he moved from Prague to the Institute for Advanced Study in Princeton. Bergmann collaborated with Einstein in an attempt to provide a geometrical unified field theory of gravitation and electromagnetism. Within this program they wrote two articles together: A. Einstein and P. G. Bergmann, Ann. Math. 39, 685 (1938) ; and A. Einstein, V. Bargmann and P. G. Bergmann, Th. von Karman Anniversary Volume 212 (1941). The search for such a theory was intense in the ten years following the birth of general relativity. In recent years, some of the geometrical ideas proposed in these publications have proved essential in contemporary attempts towards the unification of all interactions including gravity, Kaluza-Klein type theories and supergravity theories. In 1942, Bergmann published the book "Introduction to the Theory of Relativity" which included a foreword by Albert Einstein. This book is a reference for the subject, either as a textbook for classroom use or for individual study. A second corrected and enlarged edition of the book was published in 1976. Einstein said in his foreword to the first edition: "Bergmann's book seems to me to satisfy a definite need. . . Much effort has gone into making this book logically and pedagogically satisfactory and Bergmann has spent many hours with me which were devoted to this end.
During the period March 13-25, 1975, the IV course of the International School of Cosmology and Gravitation was held at Erice, Sicily and devoted primarily to gravitational waves. A number of participants have prepared their lectures for publication here. These include topics in Gravitational Radiation, Gravitational Radiation Antennas and Data Analyses, Singularities in General Relativity Theory, the Bimetric Theory of Gravitation, Tachyons, and General Relativity and Quantum Theory. V. De Sabbata and J. Weber v Contents Opening ReII1arks, J. Weber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix The Generation of Gravitational Waves: A Review of Computational Techniques, K. S. Thorne 1 Effects of Gravitational Radiation upon Electromagnetic Waves in a Dispersive Medium, B. Bertotti and R. Catenacci 63 Gravitational Waves and Their Interaction with Electromagnetic Field, V. De Sabbata . 69 Shock Waves in General Relativity, A. Papapetrou 83 Editorial Connnents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 The Detection of Gravitational Waves and Quantum Nondisturbtive Measurements, V. Braginsky 105 Onedimensional Analysis and Computer Simulation of a Weber Antenna, G. V. Pallottino 123 Comments on the Gravitational Radiation Experiments, J. Weber 135 Estimated Sensitivity of the Low Temperature Gravitational Wave Antenna in Rome, G. Pizzella 139 The L. S. U. Low Temperature Gravity Wave Experiment, W. O. Hamilton, T. P. Bernat, D. G. Blair, W. C. Oelfke 149 Optimal Detection of Signals through Linear Devices with Thermal Noise Sources and Application to the Munich Frascati Weber-Type Gravitational Wave Detectors, P. Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Synchrotron Radiation and Astrophysics, A. A."
In recent years there has been a steadily increasing cross-fertilization between cosmology and particle physics, on both the theoretical and experimental levels. Particle physics has provided new experimental data from the big accelerators in operation, and data from space satellites are accumulating rapidly. Cosmology is still one of the best laboratories for testing particle theory. The present work discusses such matters in the context of inflation, strings, dark matter, neutrinos and gravitational wave physics in the very early universe, field theory at the Planck scale, and high energy physics. A particular emphasis has been placed on a new topology for spatial infinity, on the relation between temperature and gravitational potential, a canonical formulation of general relativity, the neutrino mass, spin in the early universe, the measurement of gravity in the 10--100 m range, galaxy--galaxy and cluster--cluster correlation, black holes, string theory and string/string duality. The work also presents a beautiful review of high energy elementary particle physics, treating the meaning, status and perspectives of unification and standard model gauge couplings.
The basic subjects and main topics covered by this book are: (1) Physics of Black Holes (classical and quantum); (2) Thermodynamics, entropy and internal dynamics; (3) Creation of particles and evaporation; (4) Mini black holes; (5) Quantum mechanics of black holes in curved spacetime; (6) The role of spin and torsion in the black hole physics; (7) Equilibrium geometry and membrane paradigm; (8) Black hole in string and superstring theory; (9) Strings, quantum gravity and black holes; (10) The problem of singularity; (11) Astrophysics of black holes; (12) Observational evidence of black holes. The book reveals the deep connection between gravitational, quantum and statistical physics and also the importance of black hole behaviour in the very early universe. An important new point discussed concerns the introduction of spin in the physics of black holes, showing its central role when correctly put into the Einstein equations through the geometric concept of torsion, with the new concept of a time-temperature uncertainty relation, minimal time, minimal entropy, quantization of entropy and the connection of black hole with wormholes. Besides theoretical aspects, the reader will also find observational evidence for black holes in active galactic nuclei, in binary X-ray sources and in supernova remnants. The book will thus interest physicists, astronomers, and astrophysicists at different levels of their career who specialize in classical properties, quantum processes, statistical thermodynamics, numerical collapse, observational evidence, general relativity and other related problems.
Proceedings of the NATO Advanced Study Institute, Erice, Italy, May 2-12, 1987
An up-to-date description of progress and current problems with the
gravitational constant, both in terms of generalized gravitational
theories and experiments either in the laboratory, using Casimir
force measurements, or in space at solar system distances and in
cosmological observations.
In this XVII Course of the International School of Cosmology and Gravitation devoted to "ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS" we have considered different aspects of the influence of gravity on quantum systems. In order to achieve this aim, in many lectures, seminars and discussions we have strengthened the interplay between gravity and quantum systems starting from the situation in the early universe based on astrophysical observations, up to the earthly based experiments with atom interferometry for probing the structure of space-time. Thus we have had timely lectures on the quantum field and horizon of a black hole including reviews of the problem of black holes thermodynamics and entropy, quantum information, quantum black holes, quantum evaporation and Hawking radiation, recent advances in stockastic gravity. We have also discussed quantum fluctuations in inflationary universe, quantum effects and reheating after inflation, and superplanckian energies in Hawking radiation. In this regard the subject of spinors in purely affine space-time and Dirac matter according to Weyl in the generalized theory of gravitation were developed . The dualism between space-time and matter has been deeply analyzed in order to see why, for general relativity, this is an obstacle for quantization of the theory. Also canonical Gravity and Mach's principle, torsion and curvature as commutator for Quantum Gravity and Dirac Geometry of real space-time were analysed, together with the problem of 5-Dimensional Projective Unified Field theory and Multidimensional Gravity and Cosmology.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|