Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of clustering of various fields in random media (i.e., appearance of small regions with enhanced content of the field against the nearly vanishing background of this field in the remaining portion of space) are examples of such structure formation. The general methodology presented in Volume 1 is used in Volume 2 Coherent Phenomena in Stochastic Dynamic Systems to expound the theory of these phenomena in some specific fields of stochastic science, among which are hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics. The material of this volume includes particle and field clustering in the cases of scalar (density field) and vector (magnetic field) passive tracers in a random velocity field, dynamic localization of plane waves in layered random media, as well as monochromatic wave propagation and caustic structure formation in random media in terms of the scalar parabolic equation.
This monograph set presents a consistent and self-contained framework of stochastic dynamic systems with maximal possible completeness. Volume 1 presents the basic concepts, exact results, and asymptotic approximations of the theory of stochastic equations on the basis of the developed functional approach. This approach offers a possibility of both obtaining exact solutions to stochastic problems for a number of models of fluctuating parameters and constructing various asymptotic buildings. Ideas of statistical topography are used to discuss general issues of generating coherent structures from chaos with probability one, i.e., almost in every individual realization of random parameters. The general theory is illustrated with certain problems and applications of stochastic mathematical physics in various fields such as mechanics, hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics.
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens - or doesn't! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under which such structure formation takes place. To make the content more accessible, these conditions are described at a comparatively elementary mathematical level by employing ideas from statistical topography.
This book addresses the processes of stochastic structure formation in two-dimensional geophysical fluid dynamics based on statistical analysis of Gaussian random fields, as well as stochastic structure formation in dynamic systems with parametric excitation of positive random fields f(r,t) described by partial differential equations. Further, the book considers two examples of stochastic structure formation in dynamic systems with parametric excitation in the presence of Gaussian pumping. In dynamic systems with parametric excitation in space and time, this type of structure formation either happens - or doesn't! However, if it occurs in space, then this almost always happens (exponentially quickly) in individual realizations with a unit probability. In the case considered, clustering of the field f(r,t) of any nature is a general feature of dynamic fields, and one may claim that structure formation is the Law of Nature for arbitrary random fields of such type. The study clarifies the conditions under which such structure formation takes place. To make the content more accessible, these conditions are described at a comparatively elementary mathematical level by employing ideas from statistical topography.
This monograph set presents a consistent and self-contained framework of stochastic dynamic systems with maximal possible completeness. Volume 1 presents the basic concepts, exact results, and asymptotic approximations of the theory of stochastic equations on the basis of the developed functional approach. This approach offers a possibility of both obtaining exact solutions to stochastic problems for a number of models of fluctuating parameters and constructing various asymptotic buildings. Ideas of statistical topography are used to discuss general issues of generating coherent structures from chaos with probability one, i.e., almost in every individual realization of random parameters. The general theory is illustrated with certain problems and applications of stochastic mathematical physics in various fields such as mechanics, hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics.
In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of clustering of various fields in random media (i.e., appearance of small regions with enhanced content of the field against the nearly vanishing background of this field in the remaining portion of space) are examples of such structure formation. The general methodology presented in Volume 1 is used in Volume 2 Coherent Phenomena in Stochastic Dynamic Systems to expound the theory of these phenomena in some specific fields of stochastic science, among which are hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics. The material of this volume includes particle and field clustering in the cases of scalar (density field) and vector (magnetic field) passive tracers in a random velocity field, dynamic localization of plane waves in layered random media, as well as monochromatic wave propagation and caustic structure formation in random media in terms of the scalar parabolic equation.
Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. Models naturally render to statistical description, where random processes and fields express the input parameters and solutions. The fundamental problem of stochastic dynamics is to identify the essential characteristics of the system (its state and evolution), and relate those to the input parameters of the system and initial data. This book is a revised and more comprehensive version of
"Dynamics of Stochastic Systems." Part I provides an introduction
to the topic. Part II is devoted to the general theory of
statistical analysis of dynamic systems with fluctuating parameters
described by differential and integral equations. Part III deals
with the analysis of specific physical problems associated with
coherent phenomena.
Fluctuating parameters appear in a variety of physical systems and
phenomena. They typically come either as random forces/sources, or
advecting velocities, or media (material) parameters, like
refraction index, conductivity, diffusivity, etc. The well known
example of Brownian particle suspended in fluid and subjected to
random molecular bombardment laid the foundation for modern
stochastic calculus and statistical physics. Other important
examples include turbulent transport and diffusion of
particle-tracers (pollutants), or continuous densities (''oil
slicks''), wave propagation and scattering in randomly
inhomogeneous media, for instance light or sound propagating in the
turbulent atmosphere.
Fluctuating parameters appear in a variety of physical systems and
phenomena. They typically come either as random forces/sources, or
advecting velocities, or media (material) parameters, like
refraction index, conductivity, diffusivity, etc. The well known
example of Brownian particle suspended in fluid and subjected to
random molecular bombardment laid the foundation for modern
stochastic calculus and statistical physics. Other important
examples include turbulent transport and diffusion of
particle-tracers (pollutants), or continuous densities (''oil
slicks''), wave propagation and scattering in randomly
inhomogeneous media, for instance light or sound propagating in the
turbulent atmosphere.
|
You may like...
|