Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
This first complete English language edition of "Euclides vindicatus" presents a corrected and revised edition of the classical English translation of Saccheri's text by G.B. Halsted. It is complemented with a historical introduction on the geometrical environment of the time and a detailed commentary that helps to understand the aims and subtleties of the work."" "Euclides vindicatus, " written by the Jesuit mathematician Gerolamo Saccheri, was published in Milan in 1733. In it, Saccheri attempted to reform elementary geometry in two important directions: a demonstration of the famous Parallel Postulate and the theory of proportions. Both topics were of pivotal importance in the mathematics of the time. In particular, the Parallel Postulate had escaped demonstration since the first attempts at it in the Classical Age, and several books on the topic were published in the Early Modern Age. At the same time, the theory of proportion was the most important mathematical tool of the Galilean School in its pursuit of the mathematization of nature. Saccheri's attempt to prove the Parallel Postulate is today considered the most important breakthrough in geometry in the 18th century, as he was able to develop for hundreds of pages and dozens of theorems a system in geometry that denied the truth of the postulate (in the attempt to find a contradiction). This can be regarded as the first system of non-Euclidean geometry. Its later developments by Lambert, Bolyai, Lobachevsky and Gauss eventually opened the way to contemporary geometry.Occupying a unique position in the literature of mathematical history, "Euclid Vindicated from Every Blemish" will be of high interest to historians of mathematics as well as historians of philosophy interested in the development of non-Euclidean geometries.
This book collects the papers of the conference held in Berlin, Germany, 27-29 August 2012, on 'Space, Geometry and the Imagination from Antiquity to the Modern Age'. The conference was a joint effort by the Max Planck Institute for the History of Science (Berlin) and the Centro die Ricerca Matematica Ennio De Giorgi (Pisa).
This volume collects 22 essays on the history of logic written by outstanding specialists in the field. The book was originally prompted by the 2018-2019 celebrations in honor of Massimo Mugnai, a world-renowned historian of logic, whose contributions on Medieval and Modern logic, and to the understanding of the logical writings of Leibniz in particular, have shaped the field in the last four decades. Given the large number of recent contributions in the history of logic that have some connections or debts with Mugnai's work, the editors have attempted to produce a volume showing the vastness of the development of logic throughout the centuries. We hope that such a volume may help both the specialist and the student to realize the complexity of the history of logic, the large array of problems that were touched by the discipline, and the manifold relations that logic entertained with other subjects in the course of the centuries. The contributions of the volume, in fact, span from Antiquity to the Modern Age, from semantics to linguistics and proof theory, from the discussion of technical problems to deep metaphysical questions, and in it the history of logic is kept in dialogue with the history of mathematics, economics, and the moral sciences at large.
This volume collects 22 essays on the history of logic written by outstanding specialists in the field. The book was originally prompted by the 2018-2019 celebrations in honor of Massimo Mugnai, a world-renowned historian of logic, whose contributions on Medieval and Modern logic, and to the understanding of the logical writings of Leibniz in particular, have shaped the field in the last four decades. Given the large number of recent contributions in the history of logic that have some connections or debts with Mugnai’s work, the editors have attempted to produce a volume showing the vastness of the development of logic throughout the centuries. We hope that such a volume may help both the specialist and the student to realize the complexity of the history of logic, the large array of problems that were touched by the discipline, and the manifold relations that logic entertained with other subjects in the course of the centuries. The contributions of the volume, in fact, span from Antiquity to the Modern Age, from semantics to linguistics and proof theory, from the discussion of technical problems to deep metaphysical questions, and in it the history of logic is kept in dialogue with the history of mathematics, economics, and the moral sciences at large.
This book reconstructs, both from the historical and theoretical points of view, Leibniza (TM)s geometrical studies, focusing in particular on the research Leibniz carried on in the last years of his life. The main purpose of the work is to offer a better understanding of the philosophy of space and in general of the mature Leibnizean metaphysics, through a pressing confrontation with the problems of geometric foundation. Regarding this scope of problems, the book also deals quite in depth with Leibniza (TM)s theory of sensibility, thus favouring the comparison and contrast between Leibniza (TM)s philosophy and Kanta (TM)s transcendentalist solution. The Appendix gives editing to a number of previously unpublished manuscripts on geometry from the Leibniz Archiv.
This book collects the papers of the conference held in Berlin, Germany, 27-29 August 2012, on 'Space, Geometry and the Imagination from Antiquity to the Modern Age'. The conference was a joint effort by the Max Planck Institute for the History of Science (Berlin) and the Centro die Ricerca Matematica Ennio De Giorgi (Pisa).
This first complete English language edition of Euclides vindicatus presents a corrected and revised edition of the classical English translation of Saccheri's text by G.B. Halsted. It is complemented with a historical introduction on the geometrical environment of the time and a detailed commentary that helps to understand the aims and subtleties of the work. Euclides vindicatus, written by the Jesuit mathematician Gerolamo Saccheri, was published in Milan in 1733. In it, Saccheri attempted to reform elementary geometry in two important directions: a demonstration of the famous Parallel Postulate and the theory of proportions. Both topics were of pivotal importance in the mathematics of the time. In particular, the Parallel Postulate had escaped demonstration since the first attempts at it in the Classical Age, and several books on the topic were published in the Early Modern Age. At the same time, the theory of proportion was the most important mathematical tool of the Galilean School in its pursuit of the mathematization of nature. Saccheri's attempt to prove the Parallel Postulate is today considered the most important breakthrough in geometry in the 18th century, as he was able to develop for hundreds of pages and dozens of theorems a system in geometry that denied the truth of the postulate (in the attempt to find a contradiction). This can be regarded as the first system of non-Euclidean geometry. Its later developments by Lambert, Bolyai, Lobachevsky and Gauss eventually opened the way to contemporary geometry. Occupying a unique position in the literature of mathematical history, Euclid Vindicated from Every Blemish will be of high interest to historians of mathematics as well as historians of philosophy interested in the development of non-Euclidean geometries.
The book offers a collection of essays on various aspects of Leibniz's scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz's logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz's scientific works through modern mathematical tools, and compare Leibniz's results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz's work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz's researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.
The book offers a collection of essays on various aspects of Leibniz's scientific thought, written by historians of science and world-leading experts on Leibniz. The essays deal with a vast array of topics on the exact sciences: Leibniz's logic, mereology, the notion of infinity and cardinality, the foundations of geometry, the theory of curves and differential geometry, and finally dynamics and general epistemology. Several chapters attempt a reading of Leibniz's scientific works through modern mathematical tools, and compare Leibniz's results in these fields with 19th- and 20th-Century conceptions of them. All of them have special care in framing Leibniz's work in historical context, and sometimes offer wider historical perspectives that go much beyond Leibniz's researches. A special emphasis is given to effective mathematical practice rather than purely epistemological thought. The book is addressed to all scholars of the exact sciences who have an interest in historical research and Leibniz in particular, and may be useful to historians of mathematics, physics, and epistemology, mathematicians with historical interests, and philosophers of science at large.
|
You may like...
|