Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 25 matches in All Departments
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors.
The subjects refer to histories of ancient and modern use of seacoasts; possible macro-projects capable of massive changes in the coastlines of the Dead Sea, Red Sea and Persian Gulf caused by canal and massively scaled hydropower dam installations; relevant macro-projects for the Black Sea and Baltic Sea; possibilities of refreshment of the Aral Sea and Iran 's Lake Uremia with seawater or river freshwater importation macro-projects; potential rehabilitation of some vital arid zone regions now dominated by moving or movable surface granular materials using unique and unusual macro-projects; seawater flooding of land regions situated below present-day global sea-level; harnessing energy and obtaining freshwater from the world 's salt-laden ocean by modern industrial means; various macro-projects designed specifically for the protection (reduction of vulnerability) of particular Earth geographical regions.
In the past decade, there has been a substantial increase of grid-feeding photovoltaic applications, thus raising the importance of solar electricity in the energy mix. This trend is expected to continue and may even increase. Apart from the high initial investment cost, the fluctuating nature of the solar resource raises particular insertion problems in electrical networks. Proper grid managing demands short- and long-time forecasting of solar power plant output. "Weather modeling and forecasting of PV systems operation" is focused on this issue. Models for predicting the state of the sky, nowcasting solar irradiance and forecasting solar irradiation are studied and exemplified. Statistical as well as artificial intelligence methods are described. The efficiency of photovoltaic converters is assessed for any weather conditions. "Weather modeling and forecasting of PV systems operation" is
written for researchers, engineers, physicists and students
interested in PV systems design and utilization.
The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation. Keywords: Asteroids, Asteroid exploration, Asteroid exploitation, Energy sources, Space Resources, Material Resources, In-Situ Resource Utilization, Mining
Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of forms to suit these applications. The radiation reaching the upper atmosphere of the Earth is a quantity rather constant in time. But the radiation reaching some point on Earth surface is random in nature. The main cause is the fact that various gases within the atmosphere absorb solar radiation at different wavelengths, and clouds and dust also affect it. There are two ways to obtaining solar radiation data at ground level: by measurement and by modelling. The book will facilitate the calculation of solar radiation required by engineers, designers and scientists and, as a result, will increase the access to needed solar radiation data.
Traditionally, power engineering has been a subfield of energy engineering and electrical engineering which deals with the generation, transmission, distribution and utilization of electric power and the electrical devices connected to such systems including generators, motors and transformers. Implicitly this perception is associated with the generation of power in large hydraulic, thermal and nuclear plants and distributed consumption. Faced with the climate change phenomena, humanity has had to now contend with changes in attitudes in respect of environment protection and depletion of classical energy resources. These have had consequences in the power production sector, already faced with negative public opinions on nuclear energy and favorable perception of renewable energy resources and about distributed power generation. The objective of this edited book is to review all these changes and to present solutions for future power generation. Future energy systems must factor in the changes and developments in technology like improvements of natural gas combined cycles and clean coal technologies, carbon dioxide capture and storage, advancements in nuclear reactors and hydropower, renewable energy engineering, power-to-gas conversion and fuel cells, energy crops, new energy vectors biomass-hydrogen, thermal energy storage, new storage systems diffusion, modern substations, high voltage engineering equipment and compatibility, HVDC transmission with FACTS, advanced optimization in a liberalized market environment, active grids and smart grids, power system resilience, power quality and cost of supply, plug-in electric vehicles, smart metering, control and communication technologies, new key actors as prosumers, smart cities. The emerging research will enhance the security of energy systems, safety in operation, protection of environment, improve energy efficiency, reliability and sustainability. The book reviews current literature in the advances, innovative options and solutions in power engineering. It has been written for researchers, engineers, technicians and graduate and doctorate students interested in power engineering.
Faced with the climate change phenomena, humanity has had to now contend with numerous changes, including our attitude environment protection, and also with depletion of classical energy resources. These have had consequences in the power production sector, which was already struggling with negative public opinion on nuclear energy, but a favorable perception of renewable energy resources. The objective of this edited volume is to review all these changes and to present solutions for future power generation.
Faced with the climate change phenomena, humanity has had to now contend with numerous changes, including our attitude environment protection, and also with depletion of classical energy resources. These have had consequences in the power production sector, which was already struggling with negative public opinion on nuclear energy, but a favorable perception of renewable energy resources. The objective of this edited volume is to review all these changes and to present solutions for future power generation.
The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers.
The Earth has limited resources while the resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial bodies and their resources. This book investigates Outer Solar Systems and their prospective energy and material resources. It presents past missions and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great resource of condensed information for specialists interested in current and impending Outer Solar Systems related activities and a good starting point for space researchers, inventors, technologists and potential investors.
This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.
This textbook aims to briefly outline the main directions in which the geometrization of thermodynamics has been developed in the last decades. The textbook is accessible to people trained in thermal sciences but not necessarily with solid formation in mathematics. For this, in the first chapters a summary of the main mathematical concepts is made. In some sense, this makes the textbook self-consistent. The rest of the textbook consists of a collection of results previously obtained in this young branch of thermodynamics. The manner of presentation used throughout the textbook is adapted for ease of access of readers with education in natural and technical sciences.
This book investigates Venus and Mercury prospective energy and material resources. It is a collection of topics related to exploration and utilization of these bodies. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists interested in current and impending Venus and Mercury related activities and a good starting point for space researchers, inventors, technologists and potential investors. Written for researchers, engineers, and businessmen interested in Venus and Mercury exploration and exploitation.
The Earth has limited material and energy resources while these resources in space are virtually unlimited. Further development of humanity will require going beyond our planet and exploring of extraterrestrial resources and sources of unlimited power. Â Thus far, all missions to asteroids have been motivated by scientific exploration. However, given recent advancements in various space technologies, mining asteroids for resources is becoming ever more feasible. A significant portion of asteroids value is derived from their location; the required resources do not need to be lifted at a great expense from the surface of the Earth. Â Resources derived from Asteroid not only can be brought back to Earth but could also be used to sustain human exploration of space and permanent settlements in space. Â This book investigates asteroids' prospective energy and material resources. It is a collection of topics related to asteroid exploration, and utilization. It presents past and future technologies and solutions to old problems that could become reality in our life time. The book therefore is a great source of condensed information for specialists involved in current and impending asteroid-related activities and a good starting point for space researchers, inventors, technologists and potential investors. Â Written for researchers, engineers, and businessmen interested in asteroids' exploration and exploitation. Â Keywords: Asteroids, Asteroid exploration, Asteroid exploitation, Energy sources, Space Resources, Material Resources, In-Situ Resource Utilization, Mining Â
The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers.
th th Mars, the Red Planet, fourth planet from the Sun, forever linked with 19 and 20 Century fantasy of a bellicose, intelligent Martian civilization. The romance and excitement of that fiction remains today, even as technologically sophisticated - botic orbiters, landers, and rovers seek to unveil Mars' secrets; but so far, they have yet to find evidence of life. The aura of excitement, though, is justified for another reason: Mars is a very special place. It is the only planetary surface in the Solar System where humans, once free from the bounds of Earth, might hope to establish habitable, self-sufficient colonies. Endowed with an insatiable drive, focused motivation, and a keen sense of - ploration and adventure, humans will undergo the extremes of physical hardship and danger to push the envelope, to do what has not yet been done. Because of their very nature, there is little doubt that humans will in fact conquer Mars. But even earth-bound extremes, such those experienced by the early polar explorers, may seem like a walk in the park compared to future experiences on Mars.
Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design, e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research.
Traditionally, power engineering has been a subfield of energy engineering and electrical engineering which deals with the generation, transmission, distribution and utilization of electric power and the electrical devices connected to such systems including generators, motors and transformers. Implicitly this perception is associated with the generation of power in large hydraulic, thermal and nuclear plants and distributed consumption. Faced with the climate change phenomena, humanity has had to now contend with changes in attitudes in respect of environment protection and depletion of classical energy resources. These have had consequences in the power production sector, already faced with negative public opinions on nuclear energy and favorable perception of renewable energy resources and about distributed power generation. The objective of this edited book is to review all these changes and to present solutions for future power generation. Future energy systems must factor in the changes and developments in technology like improvements of natural gas combined cycles and clean coal technologies, carbon dioxide capture and storage, advancements in nuclear reactors and hydropower, renewable energy engineering, power-to-gas conversion and fuel cells, energy crops, new energy vectors biomass-hydrogen, thermal energy storage, new storage systems diffusion, modern substations, high voltage engineering equipment and compatibility, HVDC transmission with FACTS, advanced optimization in a liberalized market environment, active grids and smart grids, power system resilience, power quality and cost of supply, plug-in electric vehicles, smart metering, control and communication technologies, new key actors as prosumers, smart cities. The emerging research will enhance the security of energy systems, safety in operation, protection of environment, improve energy efficiency, reliability and sustainability. The book reviews current literature in the advances, innovative options and solutions in power engineering. It has been written for researchers, engineers, technicians and graduate and doctorate students interested in power engineering.
This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: * Launch systems, structures, power, thermal, communications, propulsion, and software, to * entry, descent and landing, ground segment, robotics, and data systems, to * technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.
The subjects refer to histories of ancient and modern use of seacoasts; possible macro-projects capable of massive changes in the coastlines of the Dead Sea, Red Sea and Persian Gulf caused by canal and massively scaled hydropower dam installations; relevant macro-projects for the Black Sea and Baltic Sea; possibilities of refreshment of the Aral Sea and Iran's Lake Uremia with seawater or river freshwater importation macro-projects; potential rehabilitation of some vital arid zone regions now dominated by moving or movable surface granular materials using unique and unusual macro-projects; seawater flooding of land regions situated below present-day global sea-level; harnessing energy and obtaining freshwater from the world's salt-laden ocean by modern industrial means; various macro-projects designed specifically for the protection (reduction of vulnerability) of particular Earth geographical regions.
The world of nanotechnology has opened a vast array of novel frontiers in materials science, by the exploitation of the properties and phenomena at the nanometer scale. After transistors, also other devices will enter the nanoscale era. Technologies based on semi-conducting and/or organic materials have moved from a few empirical examples to a booming science-based activity. Physics at nanoscale becomes the science used for new device improvements. Solar cells are no exception to that. This book on nanophysics of photovoltaic cells thus comes at the right moment. Such a book will support research efforts in numerous laboratories where the solar cells of tomorrow are designed. The reader will be happy to find chapters on various topics, such as thermodynamics, photonics and electronics of dye-sensitised, electrochemical, nanostructured, polymer and organic materials. Light concentration, photoluminescence, intermediate-band absorption, photon conversion, and quantum confinement are discussed. The present book will surely be of great value for all scientists and engineers involved in the development of future solar cells.
|
You may like...
|