0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Charge Transport in Low Dimensional Semiconductor Structures - The Maximum Entropy Approach (Hardcover, 1st ed. 2020): Vito... Charge Transport in Low Dimensional Semiconductor Structures - The Maximum Entropy Approach (Hardcover, 1st ed. 2020)
Vito Dario Camiola, Giovanni Mascali, Vittorio Romano
R2,697 Discovery Miles 26 970 Ships in 18 - 22 working days

This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schroedinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.

Scientific Computing in Electrical Engineering - SCEE 2018, Taormina, Italy, September 2018 (Hardcover, 1st ed. 2020): Giuseppe... Scientific Computing in Electrical Engineering - SCEE 2018, Taormina, Italy, September 2018 (Hardcover, 1st ed. 2020)
Giuseppe Nicosia, Vittorio Romano
R2,683 Discovery Miles 26 830 Ships in 18 - 22 working days

This collection of selected papers presented at the 12th International Conference on Scientific Computing in Electrical Engineering, SCEE 2018, held in Taormina, Sicily, Italy, in September 2018, showcases the state of the art in SCEE. The aim of the SCEE 2018 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and of electromagnetic fields. This extensive reference work is divided into five parts: Computational Electromagnetics, Device Modeling and Simulation, Circuit Simulation, Mathematical and Computational Methods, Model Order Reduction. Each part starts with a general introduction, followed by the respective contributions. The book will appeal to mathematicians and electrical engineers. Further, it introduces algorithm and program developers to recent advances in the other fields, while industry experts will be introduced to new programming tools and mathematical methods.

Scientific Computing in Electrical Engineering - SCEE 2018, Taormina, Italy, September 2018 (Paperback, 1st ed. 2020): Giuseppe... Scientific Computing in Electrical Engineering - SCEE 2018, Taormina, Italy, September 2018 (Paperback, 1st ed. 2020)
Giuseppe Nicosia, Vittorio Romano
R2,655 Discovery Miles 26 550 Ships in 18 - 22 working days

This collection of selected papers presented at the 12th International Conference on Scientific Computing in Electrical Engineering, SCEE 2018, held in Taormina, Sicily, Italy, in September 2018, showcases the state of the art in SCEE. The aim of the SCEE 2018 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and of electromagnetic fields. This extensive reference work is divided into five parts: Computational Electromagnetics, Device Modeling and Simulation, Circuit Simulation, Mathematical and Computational Methods, Model Order Reduction. Each part starts with a general introduction, followed by the respective contributions. The book will appeal to mathematicians and electrical engineers. Further, it introduces algorithm and program developers to recent advances in the other fields, while industry experts will be introduced to new programming tools and mathematical methods.

Charge Transport in Low Dimensional Semiconductor Structures - The Maximum Entropy Approach (Paperback, 1st ed. 2020): Vito... Charge Transport in Low Dimensional Semiconductor Structures - The Maximum Entropy Approach (Paperback, 1st ed. 2020)
Vito Dario Camiola, Giovanni Mascali, Vittorio Romano
R2,669 Discovery Miles 26 690 Ships in 18 - 22 working days

This book offers, from both a theoretical and a computational perspective, an analysis of macroscopic mathematical models for description of charge transport in electronic devices, in particular in the presence of confining effects, such as in the double gate MOSFET. The models are derived from the semiclassical Boltzmann equation by means of the moment method and are closed by resorting to the maximum entropy principle. In the case of confinement, electrons are treated as waves in the confining direction by solving a one-dimensional Schroedinger equation obtaining subbands, while the longitudinal transport of subband electrons is described semiclassically. Limiting energy-transport and drift-diffusion models are also obtained by using suitable scaling procedures. An entire chapter in the book is dedicated to a promising new material like graphene. The models appear to be sound and sufficiently accurate for systematic use in computer-aided design simulators for complex electron devices. The book is addressed to applied mathematicians, physicists, and electronic engineers. It is written for graduate or PhD readers but the opening chapter contains a modicum of semiconductor physics, making it self-consistent and useful also for undergraduate students.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Computational Toxicology - Volume II
Brad Reisfeld, Arthur N. Mayeno Hardcover R4,187 Discovery Miles 41 870
Contamination of Water - Health Risk…
Arif Ahamad, Sharf Elahi Siddiqui, … Paperback R3,570 Discovery Miles 35 700
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, … Hardcover R11,317 Discovery Miles 113 170
Proceedings of the International…
Andrea Matta, Jingshan Li, … Hardcover R3,735 R3,475 Discovery Miles 34 750
Advanced Macroergonomics and…
Arturo Realyvasquez, Aide Aracely Maldonado-Macias, … Hardcover R5,612 Discovery Miles 56 120
Applied Optimization in the Petroleum…
Hesham K. Alfares Hardcover R3,673 Discovery Miles 36 730
History of Risk Assessment in Toxicology
Sol Bobst Paperback R1,070 Discovery Miles 10 700
Models, Algorithms, and Technologies for…
Boris I. Goldengorin, Valery A. Kalyagin, … Hardcover R3,328 Discovery Miles 33 280
Toxicology - Oxidative Stress and…
Vinood B. B Patel, Victor R. Preedy Paperback R3,095 Discovery Miles 30 950
Managing Operations Throughout Global…
Jean C Essila Hardcover R5,104 Discovery Miles 51 040

 

Partners