![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
This book, now in its third edition, explores how human populations grow, based on their creative abilities. To reconsider the theory of economic growth from a physicist's perspective, the book analyses the concepts of value and utility and their relationship to thermodynamic concepts. This approach allows the author to include characteristics of technology in descriptions of development and to formulate a phenomenological (macroeconomic, no-price fluctuations are discussed) theory of production as a set of evolutionary equations in one-sector and multi-sector approximations. The theory is proved to be useful for describing both national economies and global production in ancient times. This monograph presents the topics in a compact and consistent manner and can be used by students with a background in physics and other natural sciences who wish to specialize in economics. It explains how the growth of production is connected with advances in technology, consumption of labour and energy and makes it possible to analyse past and present social production systems and to build scripts of future progress. The book is of interest to energy specialists engaged in planning and analyzing the production and consumption of energy carriers, and to economists wanting to know how energy and technology affect economic growth. This third edition has been substantially revised and three brand new chapters have been added. Chapter 8 illustrates the robustness of the theory with the aid of statistical historical data from the Russian economy, while Chapter 12 is devoted to a reconstruction of the global production activity in ancient times. Chapter 13 discusses the principles of the organization of social production.
In this book the theory of social production is systematically formulated in terms and concepts of classical political economy and neo-classical economics. In this way the subject becomes accessible not only to professional researchers in areas of the theory of production and economic growth, but also to the educated reader who is curious about the principles behind the functioning of a national economy. The book can be considered as an introduction for students with a background in physics, chemistry and engineering, who wish to specialize in economics. It is explained how the growth of production is connected with achievements in technological consumption of labour and energy. The theory allows one to analyse the past and the present of the social production system and to build scripts of the future progress. The book could be interesting for energy specialists who are engaged in planning and analysing production and consumption of energy carriers and determining energy policy, and for economists who want to know how energy and technology are affecting economic growth.
I used the opportunity of this edition to correct some minor mistakes and clarify, wherever it possible, exposition of the theory in comparison with the previous edition of this book (Kluwer, Dordrechtet cet, 2000). It provokes - largement of the book, though I tried to present the modern theory of thermic motion of long macromolecules in compact form. I have tried to accumulate the common heritage and to take into account di?erent approaches in the theory of dynamics of linear polymers, at least, to understand and make clear the importance of various ideas for explanation of relaxation phenomena in linear polymers, to present recent development in the ?eld. The theory of non-equilibrium phenomena in polymer systems is based on the fundamental principles of statistical physics. However, the peculiarities of thestructureandthebehaviourofthesystemsnecessitatetheimplementation of special methods and heuristic models that are di?erent from those for gases and solids, so that polymer dynamics has appeared to be a special branch of physicsnow. Themonographcontainsdiscussionsofthemainprinciplesofthe theoryof slowrelaxationphenomena in linearpolymers, elaborated inthe last decades. The basic model of a macromolecule, which allows us a consistent explanation of di?erent relaxation phenomena (di?usion, neutron scattering, viscoelasticity, optical birefringence), remains to be a coarse-grained or be- spring model, considered in di?erent environments: viscous, to describe the behaviourofdilutesolutions, orviscoelastic, todescribethebehaviourofboth weakly and strongly entangled system
This book, now in its third edition, explores how human populations grow, based on their creative abilities. To reconsider the theory of economic growth from a physicist's perspective, the book analyses the concepts of value and utility and their relationship to thermodynamic concepts. This approach allows the author to include characteristics of technology in descriptions of development and to formulate a phenomenological (macroeconomic, no-price fluctuations are discussed) theory of production as a set of evolutionary equations in one-sector and multi-sector approximations. The theory is proved to be useful for describing both national economies and global production in ancient times. This monograph presents the topics in a compact and consistent manner and can be used by students with a background in physics and other natural sciences who wish to specialize in economics. It explains how the growth of production is connected with advances in technology, consumption of labour and energy and makes it possible to analyse past and present social production systems and to build scripts of future progress. The book is of interest to energy specialists engaged in planning and analyzing the production and consumption of energy carriers, and to economists wanting to know how energy and technology affect economic growth. This third edition has been substantially revised and three brand new chapters have been added. Chapter 8 illustrates the robustness of the theory with the aid of statistical historical data from the Russian economy, while Chapter 12 is devoted to a reconstruction of the global production activity in ancient times. Chapter 13 discusses the principles of the organization of social production.
I used the opportunity of this edition to correct some minor mistakes and clarify, wherever it possible, exposition of the theory in comparison with the previous edition of this book (Kluwer, Dordrechtet cet, 2000). It provokes - largement of the book, though I tried to present the modern theory of thermic motion of long macromolecules in compact form. I have tried to accumulate the common heritage and to take into account di?erent approaches in the theory of dynamics of linear polymers, at least, to understand and make clear the importance of various ideas for explanation of relaxation phenomena in linear polymers, to present recent development in the ?eld. The theory of non-equilibrium phenomena in polymer systems is based on the fundamental principles of statistical physics. However, the peculiarities of thestructureandthebehaviourofthesystemsnecessitatetheimplementation of special methods and heuristic models that are di?erent from those for gases and solids, so that polymer dynamics has appeared to be a special branch of physicsnow. Themonographcontainsdiscussionsofthemainprinciplesofthe theoryof slowrelaxationphenomena in linearpolymers, elaborated inthe last decades. The basic model of a macromolecule, which allows us a consistent explanation of di?erent relaxation phenomena (di?usion, neutron scattering, viscoelasticity, optical birefringence), remains to be a coarse-grained or be- spring model, considered in di?erent environments: viscous, to describe the behaviourofdilutesolutions,orviscoelastic,todescribethebehaviourofboth weakly and strongly entangled systems.
|
![]() ![]() You may like...
Digital Learning Anytime and Real Time…
Julie Coiro, Renee Hobbs
Loose-leaf
R367
Discovery Miles 3 670
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|