Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 3 of 3 matches in All Departments
Graphene-like materials have attracted considerable interest in the fields of condensed-matter physics, chemistry, and materials science due to their interesting properties as well as the promise of a broad range of applications in energy storage, electronic, optoelectronic, and photonic devices.The contents present the diverse phenomena under development in the grand quasiparticle framework through the first-principles calculations. The critical mechanisms, the orbital hybridizations and spin configurations of graphene-like materials through the chemical adsorptions, intercalations, substitutions, decorations, and heterojunctions, are taken into account. Specifically, the hydrogen-, oxygen-, transition-metal- and rare-earth-dependent compounds are thoroughly explored for the unusual spin distributions. The developed theoretical framework yields concise physical, chemical, and material pictures. The delicate evaluations are thoroughly conducted on the optimal lattices, the atom- and spin-dominated energy bands, the orbital-dependent sub-envelope functions, the spatial charge distributions, the atom- orbital- and spin-projected density of states, the spin densities, the magnetic moments, and the rich optical excitations. All consistent quantities are successfully identified by the multi-orbital hybridizations in various chemical bonds and guest- and host-induced spin configurations.The scope of the book is sufficiently broad and deep in terms of the geometric, electronic, magnetic, and optical properties of 3D, 2D, 1D, and 0D graphene-like materials with different kinds of chemical modifications. How to evaluate and analyze the first-principles results is discussed in detail. The development of the theoretical framework, which can present the diversified physical, chemical, and material phenomena, is obviously illustrated for each unusual condensed-matter system. To achieve concise physical and chemical pictures, the direct and close combinations of the numerical simulations and the phenomenological models are made frequently available via thorough discussions. It provides an obvious strategy for the theoretical framework, very useful for science and engineering communities.
Diverse Quasiparticle Properties of Emerging Materials: First-Principles Simulations thoroughly explores the rich and unique quasiparticle properties of emergent materials through a VASP-based theoretical framework. Evaluations and analyses are conducted on the crystal symmetries, electronic energy spectra/wave functions, spatial charge densities, van Hove singularities, magnetic moments, spin configurations, optical absorption structures with/without excitonic effects, quantum transports, and atomic coherent oscillations. Key Features Illustrates various quasiparticle phenomena, mainly covering orbital hybridizations and spin-up/spin-down configurations Mainly focuses on electrons and holes, in which their methods and techniques could be generalized to other quasiparticles, such as phonons and photons Considers such emerging materials as zigzag nanotubes, nanoribbons, germanene, plumbene, bismuth chalcogenide insulators Includes a section on applications of these materials This book is aimed at professionals and researchers in materials science, physics, and physical chemistry, as well as upper-level students in these fields.
Fundamental Physicochemical Properties of Germanene-related Materials: A Theoretical Perspective provides a comprehensive review of germanene-related materials to help users understand the essential properties of these compounds. The book covers various germanium complex states such as germanium oxides, germanium on Ag, germanium/silicon composites and germanium compounds. Diverse phenomena are clearly illustrated using the most outstanding candidates of the germanium/germanene-related material. Delicate simulations and analyses are thoroughly demonstrated under the first-principles method, being fully assisted by phenomenological models. Macroscopic phenomena in chemical systems, including their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry are fully covered. Germanium-based materials play critical roles in the basic and applied sciences, as clearly revealed in other group-IV and group-V condensed-matter systems. Their atomic configurations are suitable for creating the active chemical bonding among the identical and/or different nearest-neighboring atoms leading to diverse physical/chemical/material environments.
|
You may like...
|