Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 5 of 5 matches in All Departments
This book constitutes the refereed proceedings of the Third International Symposium on Quantum Interaction, QI 2009, held in Saarbrucken, Germany, in March 2009. The 21 revised full papers presented together with the 3 position papers were carefully reviewed and selected from numerous submissions. The papers show the cross-disciplinary nature of quantum interaction covering topics such as computation, cognition, decision theory, information retrieval, information systems, social interaction, computational linguistics and finance.
Providing a high level of autonomy for a human-machine team requires assumptions that address behavior and mutual trust. The performance of a human-machine team is maximized when the partnership provides mutual benefits that satisfy design rationales, balance of control, and the nature of autonomy. The distinctively different characteristics and features of humans and machines are likely why they have the potential to work well together, overcoming each other's weaknesses through cooperation, synergy, and interdependence which forms a “collective intelligence.” Trust is bidirectional and two-sided; humans need to trust AI technology, but future AI technology may also need to trust humans.Putting AI in the Critical Loop: Assured Trust and Autonomy in Human-Machine Teams focuses on human-machine trust and “assured” performance and operation in order to realize the potential of autonomy. This book aims to take on the primary challenges of bidirectional trust and performance of autonomous systems, providing readers with a review of the latest literature, the science of autonomy, and a clear path towards the autonomy of human-machine teams and systems. Throughout this book, the intersecting themes of collective intelligence, bidirectional trust, and continual assurance form the challenging and extraordinarily interesting themes which will help lay the groundwork for the audience to not only bridge the knowledge gaps, but also to advance this science to develop better solutions.
Artificial Intelligence for the Internet of Everything considers the foundations, metrics and applications of IoE systems. It covers whether devices and IoE systems should speak only to each other, to humans or to both. Further, the book explores how IoE systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems. It examines the meaning, value and effect that IoT has had and may have on ordinary life, in business, on the battlefield, and with the rise of intelligent and autonomous systems. Based on an artificial intelligence (AI) perspective, this book addresses how IoE affects sensing, perception, cognition and behavior. Each chapter addresses practical, measurement, theoretical and research questions about how these "things" may affect individuals, teams, society or each other. Of particular focus is what may happen when these "things" begin to reason, communicate and act autonomously on their own, whether independently or interdependently with other "things".
Quantum Mechanics (QM) is emerging from physics into non-physics domains (domains traditionally found outside of physics) such as human language, cognition, information processing, AI, biology, political science, economics, organizations, and social interaction. The Second Quantum Interaction Symposium advances and applies the methods and structures of QM to these and other non-physics domains, specifically including: . The advancement of theory and experimentation for applying QM to non-physics domains (including a clarification of what QM means in non-physics domains) . Applications of QM inspired methods to address, or to more efficiently solve, problems in non-physics domains (including contrasts between classical and quantum methods) . Applications of QM methods on a quantum computer, such as implementation of AI, or Information Retrieval (IR) techniques . Use of QM to address previously unsolved problems in other fields
Human-Machine Shared Contexts considers the foundations, metrics, and applications of human-machine systems. Editors and authors debate whether machines, humans, and systems should speak only to each other, only to humans, or to both and how. The book establishes the meaning and operation of "shared contexts" between humans and machines; it also explores how human-machine systems affect targeted audiences (researchers, machines, robots, users) and society, as well as future ecosystems composed of humans and machines. This book explores how user interventions may improve the context for autonomous machines operating in unfamiliar environments or when experiencing unanticipated events; how autonomous machines can be taught to explain contexts by reasoning, inferences, or causality, and decisions to humans relying on intuition; and for mutual context, how these machines may interdependently affect human awareness, teams and society, and how these "machines" may be affected in turn. In short, can context be mutually constructed and shared between machines and humans? The editors are interested in whether shared context follows when machines begin to think, or, like humans, develop subjective states that allow them to monitor and report on their interpretations of reality, forcing scientists to rethink the general model of human social behavior. If dependence on machine learning continues or grows, the public will also be interested in what happens to context shared by users, teams of humans and machines, or society when these machines malfunction. As scientists and engineers "think through this change in human terms," the ultimate goal is for AI to advance the performance of autonomous machines and teams of humans and machines for the betterment of society wherever these machines interact with humans or other machines. This book will be essential reading for professional, industrial, and military computer scientists and engineers; machine learning (ML) and artificial intelligence (AI) scientists and engineers, especially those engaged in research on autonomy, computational context, and human-machine shared contexts; advanced robotics scientists and engineers; scientists working with or interested in data issues for autonomous systems such as with the use of scarce data for training and operations with and without user interventions; social psychologists, scientists and physical research scientists pursuing models of shared context; modelers of the internet of things (IOT); systems of systems scientists and engineers and economists; scientists and engineers working with agent-based models (ABMs); policy specialists concerned with the impact of AI and ML on society and civilization; network scientists and engineers; applied mathematicians (e.g., holon theory, information theory); computational linguists; and blockchain scientists and engineers.
|
You may like...
|