Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
This book covers a wide range of recent statistical methods that are of interest to scientists in biostatistics as well as in other related fields such as chemometrics, environmetrics and geophysics. The contributed papers, from internationally recognized researchers, present various statistical methodologies together with a selected scope of their main mathematical properties and their application in a real case study.
The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.
This book describes an interactive statistical computing environment called 1 XploRe. As the name suggests, support for exploratory statistical analysis is given by a variety of computational tools. XploRe is a matrix-oriented statistical language with a comprehensive set of basic statistical operations that provides highly interactive graphics, as well as a programming environ ment for user-written macros; it offers hard-wired smoothing procedures for effective high-dimensional data analysis. Its highly dynamic graphic capa bilities make it possible to construct student-level front ends for teaching basic elements of statistics. Hot keys make it an easy-to-use computing environment for statistical analysis. The primary objective of this book is to show how the XploRe system can be used as an effective computing environment for a large number of statistical tasks. The computing tasks we consider range from basic data matrix manipulations to interactive customizing of graphs and dynamic fit ting of high-dimensional statistical models. The XploRe language is similar to other statistical languages and offers an interactive help system that can be extended to user-written algorithms. The language is intuitive and read ers with access to other systems can, without major difficulty, reproduce the examples presented here and use them as a basis for further investigation.
This book describes an interactive statistical computing environment called 1 XploRe. As the name suggests, support for exploratory statistical analysis is given by a variety of computational tools. XploRe is a matrix-oriented statistical language with a comprehensive set of basic statistical operations that provides highly interactive graphics, as well as a programming environ ment for user-written macros; it offers hard-wired smoothing procedures for effective high-dimensional data analysis. Its highly dynamic graphic capa bilities make it possible to construct student-level front ends for teaching basic elements of statistics. Hot keys make it an easy-to-use computing environment for statistical analysis. The primary objective of this book is to show how the XploRe system can be used as an effective computing environment for a large number of statistical tasks. The computing tasks we consider range from basic data matrix manipulations to interactive customizing of graphs and dynamic fit ting of high-dimensional statistical models. The XploRe language is similar to other statistical languages and offers an interactive help system that can be extended to user-written algorithms. The language is intuitive and read ers with access to other systems can, without major difficulty, reproduce the examples presented here and use them as a basis for further investigation.
The author has attempted to present a book that provides a non-technical introduction into the area of non-parametric density and regression function estimation. The application of these methods is discussed in terms of the S computing environment. Smoothing in high dimensions faces the problem of data sparseness. A principal feature of smoothing, the averaging of data points in a prescribed neighborhood, is not really practicable in dimensions greater than three if we have just one hundred data points. Additive models provide a way out of this dilemma; but, for their interactiveness and recursiveness, they require highly effective algorithms. For this purpose, the method of WARPing (Weighted Averaging using Rounded Points) is described in great detail.
This book covers a wide range of recent statistical methods that are of interest to scientists in biostatistics as well as in other related fields such as chemometrics, environmetrics and geophysics. The contributed papers, from internationally recognized researchers, present various statistical methodologies together with a selected scope of their main mathematical properties and their application in a real case study.
This COMPSTAT 2002 book contains the Keynote, Invited, and Full Contributed papers presented in Berlin, August 2002. A companion volume including Short Communications and Posters is published on CD. The COMPSTAT 2002 is the 15th conference in a serie of biannual conferences with the objective to present the latest developments in Computational Statistics and is taking place from August 24th to August 28th, 2002. Previous COMPSTATs were in Vienna (1974), Berlin (1976), Leiden (1978), Edinburgh (1980), Toulouse (1982), Pra ue (1984), Rome (1986), Copenhagen (1988), Dubrovnik (1990), Neuchatel (1992), Vienna (1994), Barcelona (1996), Bris tol (1998) and Utrecht (2000). COMPSTAT 2002 is organised by CASE, Center of Applied Statistics and Eco nomics at Humboldt-Universitat zu Berlin in cooperation with F'reie Universitat Berlin and University of Potsdam. The topics of COMPSTAT include methodological applications, innovative soft ware and mathematical developments, especially in the following fields: statistical risk management, multivariate and robust analysis, Markov Chain Monte Carlo Methods, statistics of E-commerce, new strategies in teaching (Multimedia, In ternet), computerbased sampling/questionnaires, analysis of large databases (with emphasis on computing in memory), graphical tools for data analysis, classification and clustering, new statistical software and historical development of software."
Applied Nonparametric Regression brings together in one place the techniques for regression curve smoothing involving more than one variable. The computer and the development of interactive graphics programs has made curve estimation popular. This volume focuses on the applications and practical problems of two central aspects of curve smoothing: the choice of smoothing parameters and the construction of confidence bounds. The methods covered in this text have numerous applications in many areas using statistical analysis. Examples are drawn from economics--such as the estimation of Engel curves--as well as other disciplines including medicine and engineering. For practical applications of these methods a computing environment for exploratory Regression--XploRe--is described.
During the last decade, problems in the world of finance have been the main driving force for developing sophisticated mathematical methods which may be used for identifying and measuring risk. The focus is still on quantifying market and credit risk, but general operational risks will become more important in the future. In this book the reader will find approaches from economic theory, allocation problems, credit scoring, volatility structures, general market risk, country risk and extreme value theory. The contributions of this book reflect the views of leading practitioners and academics in the field of risk management.
The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994."
One of the main applications of statistical smoothing techniques is nonparametric regression. For the last 15 years there has been a strong theoretical interest in the development of such techniques. Related algorithmic concepts have been a main concern in computational statistics. Smoothing techniques in regression as well as other statistical methods are increasingly applied in biosciences and economics. But they are also relevant for medical and psychological research. Introduced are new developments in scatterplot smoothing and applications in statistical modelling. The treatment of the topics is on an intermediate level avoiding too much technicalities. Computational and applied aspects are considered throughout. Of particular interest to readers is the discussion of recent local fitting techniques.
The computer has created new fields in statistic. Numerical and statistical problems that were untackable five to ten years ago can now be computed even on portable personal computers. A computer intensive task is for example the numerical calculation of posterior distributions in Bayesian analysis. The Bootstrap and image analysis are two other fields spawned by the almost unlimited computing power. It is not only the computing power through that has revolutionized statistics, the graphical interactiveness on modern statistical environments has given us the possibility for deeper insight into our data. On November 21 ,22 1991 a conference on computer Intensive Methods in Statistics has been organized at the Universite Catholique de Louvain, Louvain-La-Neuve, Belgium. The organizers were Jan Beirlant (Katholieke Universiteit Leuven), Wolfgang Hardie (Humboldt-Universitat zu Berlin) and Leopold Simar (Universite Catholique de Louvain and Facultes Universitaires Saint-Louis). The meeting was the Xllth in the series of the Rencontre Franco-Beige des Statisticians. Following this tradition both theoretical statistical results and practical contributions of this active field of statistical research were presented. The four topics that have been treated in more detail were: Bayesian Computing; Interfacing Statistics and Computers; Image Analysis; Resampling Methods. Selected and refereed papers have been edited and collected for this book. 1) Bayesian Computing.
Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.
In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
|
You may like...
Medicine and Medical Ethics in Nazi…
Francis R. Nicosia, Jonathan Huener
Hardcover
R2,729
Discovery Miles 27 290
From the Unthinkable to the Unavoidable…
Carol Rittner, John K. Roth
Hardcover
R2,693
Discovery Miles 26 930
|