Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
Thisbookisintendedformolecularbiologistswhoperformquantitativeanalysesondata emanatingfromtheir?eldandforthestatisticianswhoworkwithmolecularbiologists andotherbiomedicalresearchers. Therearemanyexcellenttextbooksthatprovidefun- mentalcomponentsforstatisticaltrainingcurricula. Therearealsomany"byexpertsfor experts"booksinstatisticsandmolecularbiologywhichrequirein-depthknowledgein bothsubjectstobetakenfulladvantageof. Sofar,nobookinstatisticshasbeenpublished thatprovidesthebasicprinciplesofproperstatisticalanalysesandprogressestoamore advancedstatisticsinresponsetorapidlydevelopingtechnologiesandmethodologiesin the?eldofmolecularbiology. Respondingtothissituation,ourbookaimsatbridgingthegapbetweenthesetwo extremes. Molecularbiologistswillbene?tfromtheprogressivestyleofthebookwhere basicstatisticalmethodsareintroducedandgraduallyelevatedtoanintermediatelevel. Similarly,statisticianswillbene?tfromlearningthevariousbiologicaldatageneratedfrom the?eldofmolecularbiology,thetypesofquestionsofinteresttomolecularbiologists, andthestatisticalapproachestoanalyzingthedata. Thestatisticalconceptsandmethods relevanttostudiesinmolecularbiologyarepresentedinasimpleandpracticalmanner. Speci?cally,thebookcoversbasicandintermediatestatisticsthatareusefulforclassical and molecular biology settings and advanced statistical techniques that can be used to helpsolveproblemscommonlyencounteredinmodernmolecularbiologystudies,such assupervisedandunsupervisedlearning,hiddenMarkovmodels,manipulationandan- ysisofdatafromhigh-throughputmicroarrayandproteomicplatform,andsynthesisof these evidences. A tutorial-type format is used to maximize learning in some chapters. Advicefromjournaleditorsonpeer-reviewedpublicationandsomeusefulinformationon softwareimplementationarealsoprovided. Thisbookisrecommendedforuseassupplementarymaterialbothinsideandoutside classroomsorasaself-learningguideforstudents,scientists,andresearcherswhodealwith numericdatainmolecularbiologyandrelated?elds. Thosewhostartasbeginners,but desiretobeatanintermediatelevel,will?ndthisbookespeciallyusefulintheirlearning pathway. WewanttothankJohnWalker(serieseditor),PatrickMarton,DavidCasey,andAnne Meagher,(editorsatSpringerandHumana)andShanthyJaganathan(Integra-India). The followingpersonsprovidedusefuladviceandcommentsonselectionoftopics,referralto expertsineachtopic,and/orchapterreviewsthatwetrulyappreciate:StephenLooney(a former editor of this book), Stan Young, Dmitri Zaykin, Douglas Hawkins, Wei Pan, Alexandre Almeida, John Ho, Rebecca Doerge, Paula Trushin, Kevin Morgan, Jason Osborne,PeterWestfall,JennyXiang,Ya-linChiu,YolandaBarron,HuiboShao,Alvin Mushlin,andRonaldFanta. Drs. Bang,Zhou,andMazumdarwerepartiallysupported byClinicalTranslationalScienceCenter(CTSC)grant(UL1-RR024996). HeejungBang vii Contents Preface...vii Contributors...xi PARTIBASICSTATISTICS...1 1. ExperimentalStatisticsforBiologicalSciences...3 HeejungBangandMarieDavidian 2. NonparametricMethodsforMolecularBiology...105 KnutM. WittkowskiandTingtingSong 3. BasicsofBayesianMethods...155 SujitK. Ghosh 4. TheBayesiant-TestandBeyond ...179 MithatGonen PARTII DESIGNSANDMETHODSFORMOLECULARBIOLOGY...201 5. SampleSizeandPowerCalculationforMolecularBiologyStudies...203 Sin-HoJung 6. DesignsforLinkageAnalysisandAssociationStudiesofComplexDiseases...219 YuehuaCui,GengxinLi,ShaoyuLi,andRonglingWu 7. IntroductiontoEpigenomicsandEpigenome-WideAnalysis...243 MelissaJ. FazzariandJohnM. Greally 8. Exploration,Visualization,andPreprocessingofHigh-DimensionalData...267 ZhijinWuandZhiqiangWu PARTIII STATISTICALMETHODSFORMICROARRAYDATA ...285 9. IntroductiontotheStatisticalAnalysisofTwo-ColorMicroarrayData...287 MartinaBremer,EdwardHimelblau,andAndreasMadlung 10. BuildingNetworkswithMicroarrayData...315 BradleyM. Broom,WareeRinsurongkawong,LajosPusztai, andKim-AnhDo PARTIV ADVANCEDORSPECIALIZEDMETHODSFORMOLECULARBIOLOGY. . 345 11. SupportVectorMachinesforClassi?cation:AStatisticalPortrait...347 YoonkyungLee 12. AnOverviewofClusteringAppliedtoMolecularBiology ...369 RebeccaNugentandMarinaMeila ix xContents 13. HiddenMarkovModelandItsApplicationsinMotifFindings...405 JingWuandJunXie 14. DimensionReductionforHigh-DimensionalData...417 LexinLi 15. IntroductiontotheDevelopmentandValidationofPredictiveBiomarker ModelsfromHigh-ThroughputDataSets ...435 XutaoDengandFabienCampagne 16. Multi-geneExpression-basedStatisticalApproachestoPredicting Patients'ClinicalOutcomesandResponses...471 FengCheng,Sang-HoonCho,andJaeK. Lee 17. Two-StageTestingStrategiesforGenome-WideAssociationStudies inFamily-BasedDesigns ...485 AmyMurphy,ScottT. Weiss,andChristophLange 18. StatisticalMethodsforProteomics ...497 KlausJung PARTVMETA-ANALYSISFORHIGH-DIMENSIONALDATA ...509 19. StatisticalMethodsforIntegratingMultipleTypesofHigh-ThroughputData. . 511 YangXieandChulAhn 20. ABayesianHierarchicalModelforHigh-DimensionalMeta-analysis...531 FeiLiu 21. MethodsforCombiningMultipleGenome-WideLinkageStudies...541 TreciaA. KippolaandStephanieA. Santorico PARTVI OTHERPRACTICALINFORMATION ...561 22. ImprovedReportingofStatisticalDesignandAnalysis:Guidelines, Education,andEditorialPolicies...5 63 MadhuMazumdar,SampritBanerjee,andHeatherL. VanEpps 23. StataCompanion...599 JenniferSousaBrennan SubjectIndex...627 Contributors CHULAHN* Division of Biostatistics, Department of Clinical Sciences, The Harold C.
Part I: Basic Statistics 1. Experimental Statistics for Biological Sciences Heejung Bang and Marie Davidian 2. Nonparametric Methods in Molecular Biology Knut M. Wittkowski and Tingting Song 3. Basics of Bayesian Methods Sujit K. Ghosh 4. The Bayesian t-Test and Beyond Mithat Goenen Part II: Designs and Methods for Molecular Biology 5. Sample Size and Power Calculation for Molecular Biology Studies Sin-Ho Jung 6. Designs for Linkage Analysis and Association Studies of Complex Diseases Yuehua Cui, Gengxin Li, Shaoyu Li, and Rongling Wu 7. Introduction to Epigenomics and Epigenome-Wide Analysis Melissa J. Fazzari and John M. Greally 8. Exploration, Visualization, and Preprocessing of High Dimensional Data Zhijin Wu and Zhiqiang Wu Part III: Statistical Methods for Microarray Data 9. Introduction to the Statistical Analysis of Two-Color Microarray Data Martina Bremer, Edward Himelblau, and Andreas Madlung 10. Building Networks with Microarray Data Bradley M. Broom, Waree Rinsurongkawong, Lajos Pusztai, and Kim-Anh Do Part IV: Advanced or Specialized Methods for Molecular Biology 11. Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee 12. An Overview of Clustering Applied to Molecular Biology Rebecca Nugent and Marina Meila 13. Hidden Markov Model and Its Applications in Motif Findings Jing Wu and Jun Xie 14. Dimension Reduction for High Dimensional Data Lexin Li 15. Introduction to the Development and Validation of Predictive Biomarker Models from High-Throughput Datasets Xutao Deng and Fabien Campagne 16. Multi-GeneExpression-Based Statistical Approaches to Predicting Patients' Clinical Outcomes and Responses Feng Cheng, Sang-Hoon Cho, and Jae K. Lee 17. Two-Stage Testing Strategies for Genome-Wide Association Studies in Family-Based Designs Amy Murphy, Scott T. Weiss, and Christoph Lange 18. Statistical Methods for Proteomics Klaus Jung Part V: Meta-Analysis for High-Dimensional Data 19. Statistical Methods for Integrating Multiple Types of High-Throughput Data Yang Xie and Chul Ahn 20. A Bayesian Hierarchical Model for High-Dimensional Meta Analysis Fei Liu 21. Methods for Combining Multiple Genome-Wide Linkage Studies Trecia A. Kippola and Stephanie A. Santorico Part VI: Other Practical Information 22. Improved Reporting of Statistical Design and Analysis: Guidelines, Education, and Editorial Policies Madhu Mazumdar, Samprit Banerjee, and Heather L. Van Epps 23. Stata Companion Jennifer Sousa Brennan
|
You may like...
|