![]() |
![]() |
Your cart is empty |
||
Showing 1 - 6 of 6 matches in All Departments
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume.
'Written by a well-known expert in fractional stochastic calculus, this book offers a comprehensive overview of Gaussian analysis, with particular emphasis on nonlinear Gaussian functionals. In addition, it covers some topics that are not frequently encountered in other treatments, such as Littlewood-Paley-Stein, etc. This coverage makes the book a valuable addition to the literature. Many results presented in this book were hitherto available only in the research literature in the form of research papers by the author and his co-authors.'Mathematical Reviews ClippingsAnalysis of functions on the finite dimensional Euclidean space with respect to the Lebesgue measure is fundamental in mathematics. The extension to infinite dimension is a great challenge due to the lack of Lebesgue measure on infinite dimensional space. Instead the most popular measure used in infinite dimensional space is the Gaussian measure, which has been unified under the terminology of 'abstract Wiener space'.Out of the large amount of work on this topic, this book presents some fundamental results plus recent progress. We shall present some results on the Gaussian space itself such as the Brunn-Minkowski inequality, Small ball estimates, large tail estimates. The majority part of this book is devoted to the analysis of nonlinear functions on the Gaussian space. Derivative, Sobolev spaces are introduced, while the famous Poincare inequality, logarithmic inequality, hypercontractive inequality, Meyer's inequality, Littlewood-Paley-Stein-Meyer theory are given in details.This book includes some basic material that cannot be found elsewhere that the author believes should be an integral part of the subject. For example, the book includes some interesting and important inequalities, the Littlewood-Paley-Stein-Meyer theory, and the Hoermander theorem. The book also includes some recent progress achieved by the author and collaborators on density convergence, numerical solutions, local times.
In this paper, we establish a necessary and sufficient condition for the existence and regularity of the density of the solution to a semilinear stochastic (fractional) heat equation with measure-valued initial conditions. Under a mild cone condition for the diffusion coefficient, we establish the smooth joint density at multiple points. The tool we use is Malliavin calculus. The main ingredient is to prove that the solutions to a related stochastic partial differential equation have negative moments of all orders. Because we cannot prove u(t, x) ? D? for measure-valued initial data, we need a localized version of Malliavin calculus. Furthermore, we prove that the (joint) density is strictly positive in the interior of the support of the law, where we allow both measure-valued initial data and unbounded diffusion coefficient. The criteria introduced by Bally and Pardoux are no longer applicable for the parabolic Anderson model. We have extended their criteria to a localized version. Our general framework includes the parabolic Anderson model as a special case.
The stochastic calculus of variations of Paul Malliavin (1925 - 2010), known today as the Malliavin Calculus, has found many applications, within and beyond the core mathematical discipline. Stochastic analysis provides a fruitful interpretation of this calculus, particularly as described by David Nualart and the scores of mathematicians he influences and with whom he collaborates. Many of these, including leading stochastic analysts and junior researchers, presented their cutting-edge research at an international conference in honor of David Nualart's career, on March 19-21, 2011, at the University of Kansas, USA. These scholars and other top-level mathematicians have kindly contributed research articles for this refereed volume.
The purpose of this book is to present a comprehensive account of the different definitions of stochastic integration for fBm, and to give applications of the resulting theory. Particular emphasis is placed on studying the relations between the different approaches. Readers are assumed to be familiar with probability theory and stochastic analysis, although the mathematical techniques used in the book are thoroughly exposed and some of the necessary prerequisites, such as classical white noise theory and fractional calculus, are recalled in the appendices. This book will be a valuable reference for graduate students and researchers in mathematics, biology, meteorology, physics, engineering and finance.
|
![]() ![]() You may like...
|