0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • -
Status
Brand

Showing 1 - 1 of 1 matches in All Departments

Deep Learning for Chest Radiographs - Computer-Aided Classification (Paperback): Yashvi Chandola, Jitendra Virmani, H.S... Deep Learning for Chest Radiographs - Computer-Aided Classification (Paperback)
Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar
R2,076 Discovery Miles 20 760 Ships in 12 - 17 working days

Deep Learning for Chest Radiographs enumerates different strategies implemented by the authors for designing an efficient convolution neural network-based computer-aided classification (CAC) system for binary classification of chest radiographs into "Normal" and "Pneumonia." Pneumonia is an infectious disease mostly caused by a bacteria or a virus. The prime targets of this infectious disease are children below the age of 5 and adults above the age of 65, mostly due to their poor immunity and lower rates of recovery. Globally, pneumonia has prevalent footprints and kills more children as compared to any other immunity-based disease, causing up to 15% of child deaths per year, especially in developing countries. Out of all the available imaging modalities, such as computed tomography, radiography or X-ray, magnetic resonance imaging, ultrasound, and so on, chest radiographs are most widely used for differential diagnosis between Normal and Pneumonia. In the CAC system designs implemented in this book, a total of 200 chest radiograph images consisting of 100 Normal images and 100 Pneumonia images have been used. These chest radiographs are augmented using geometric transformations, such as rotation, translation, and flipping, to increase the size of the dataset for efficient training of the Convolutional Neural Networks (CNNs). A total of 12 experiments were conducted for the binary classification of chest radiographs into Normal and Pneumonia. It also includes in-depth implementation strategies of exhaustive experimentation carried out using transfer learning-based approaches with decision fusion, deep feature extraction, feature selection, feature dimensionality reduction, and machine learning-based classifiers for implementation of end-to-end CNN-based CAC system designs, lightweight CNN-based CAC system designs, and hybrid CAC system designs for chest radiographs. This book is a valuable resource for academicians, researchers, clinicians, postgraduate and graduate students in medical imaging, CAC, computer-aided diagnosis, computer science and engineering, electrical and electronics engineering, biomedical engineering, bioinformatics, bioengineering, and professionals from the IT industry.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Infantino Animal Counting Book
R170 R159 Discovery Miles 1 590
Kaufmann Fountain Pump (18W 230V…
R358 Discovery Miles 3 580
Lucky Metal Cut Throat Razer Carrier
R30 Discovery Miles 300
Lifespace Leading Design Premium Wood…
R650 R549 Discovery Miles 5 490
Wonka
Timothee Chalamet Blu-ray disc R250 R190 Discovery Miles 1 900
The Papery A5 WOW 2025 Diary - Butterfly
R349 R300 Discovery Miles 3 000
Home Classix Silicone Flower Design Mat…
R49 R37 Discovery Miles 370
ZA Key ring - Blue
R199 Discovery Miles 1 990
Maped Finger Grip Ruler (30cm)
R12 R11 Discovery Miles 110
Versace Blue Jeans Eau De Toilette Spray…
R752 R651 Discovery Miles 6 510

 

Partners