0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 1 of 1 matches in All Departments

Deep Learning for Chest Radiographs - Computer-Aided Classification (Paperback): Yashvi Chandola, Jitendra Virmani, H.S... Deep Learning for Chest Radiographs - Computer-Aided Classification (Paperback)
Yashvi Chandola, Jitendra Virmani, H.S Bhadauria, Papendra Kumar
R2,910 Discovery Miles 29 100 Ships in 10 - 15 working days

Deep Learning for Chest Radiographs enumerates different strategies implemented by the authors for designing an efficient convolution neural network-based computer-aided classification (CAC) system for binary classification of chest radiographs into "Normal" and "Pneumonia." Pneumonia is an infectious disease mostly caused by a bacteria or a virus. The prime targets of this infectious disease are children below the age of 5 and adults above the age of 65, mostly due to their poor immunity and lower rates of recovery. Globally, pneumonia has prevalent footprints and kills more children as compared to any other immunity-based disease, causing up to 15% of child deaths per year, especially in developing countries. Out of all the available imaging modalities, such as computed tomography, radiography or X-ray, magnetic resonance imaging, ultrasound, and so on, chest radiographs are most widely used for differential diagnosis between Normal and Pneumonia. In the CAC system designs implemented in this book, a total of 200 chest radiograph images consisting of 100 Normal images and 100 Pneumonia images have been used. These chest radiographs are augmented using geometric transformations, such as rotation, translation, and flipping, to increase the size of the dataset for efficient training of the Convolutional Neural Networks (CNNs). A total of 12 experiments were conducted for the binary classification of chest radiographs into Normal and Pneumonia. It also includes in-depth implementation strategies of exhaustive experimentation carried out using transfer learning-based approaches with decision fusion, deep feature extraction, feature selection, feature dimensionality reduction, and machine learning-based classifiers for implementation of end-to-end CNN-based CAC system designs, lightweight CNN-based CAC system designs, and hybrid CAC system designs for chest radiographs. This book is a valuable resource for academicians, researchers, clinicians, postgraduate and graduate students in medical imaging, CAC, computer-aided diagnosis, computer science and engineering, electrical and electronics engineering, biomedical engineering, bioinformatics, bioengineering, and professionals from the IT industry.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Mrs Spatt and Spider Grade 2 - Home…
Jill Eggleton Paperback R92 R83 Discovery Miles 830
Greek Monasticism in Southern Italy…
Barbara Crostini, Ines Angeli Murzaku Paperback R1,403 Discovery Miles 14 030
Epidemiological and Molecular Aspects on…
T. Ramamurthy, S.K. Bhattacharya Hardcover R5,632 Discovery Miles 56 320
Uncle Al - Surfer (HL) Grade 5 - Home…
Jill Eggleton Paperback R99 R90 Discovery Miles 900
A History Of The World In Six Plagues…
Edna Bonhomme Paperback R470 R365 Discovery Miles 3 650
Look Bee! Grade 1 - Home Language
Jill Eggleton Paperback R81 R73 Discovery Miles 730
Incidents of Travel in Yucatan Volumes 1…
John L. Stephens Hardcover R1,287 Discovery Miles 12 870
Penflex OHP Permanent Markers - Green…
R145 Discovery Miles 1 450
Volmaan: Omnibus - Troetelgedrog / Tande…
Jaco Jacobs Paperback R230 R216 Discovery Miles 2 160
The Obedientiaries of Westminster Abbey…
Barbara Harvey Hardcover R2,010 Discovery Miles 20 100

 

Partners