![]() |
![]() |
Your cart is empty |
||
Showing 1 - 4 of 4 matches in All Departments
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
Since most therapeutic efforts have been predominantly focused on pharmaceuticals that target proteins, there is an unmet need to develop drugs that intercept cellular pathways that critically involve nucleic acids. Progress in the discovery of nucleic acid binding drugs naturally relies on the availability of analytical methods that assess the efficacy and nature of interactions between nucleic acids and their putative ligands. This progress can benefit tremendously from new methods that probe nucleic acid/ligand interactions both rapidly and quantitatively. A variety of novel methods for these studies have emerged in recent years, and Methods for Studying DNA/Drug Interactions highlights new and non-conventional methods for exploring nucleic acid/ligand interactions. Designed to present drug-developing companies with a survey of possible future techniques, the book compares their drawbacks and advantages with respect to commonly used tools. Perhaps more importantly, this book was written to inspire young scientists to continue to advance these methods into fruition, especially in light of current capabilities for assay miniaturization and enhanced sensitivity using microfluidics and nanomaterials.
Since most therapeutic efforts have been predominantly focused on pharmaceuticals that target proteins, there is an unmet need to develop drugs that intercept cellular pathways that critically involve nucleic acids. Progress in the discovery of nucleic acid binding drugs naturally relies on the availability of analytical methods that assess the efficacy and nature of interactions between nucleic acids and their putative ligands. This progress can benefit tremendously from new methods that probe nucleic acid/ligand interactions both rapidly and quantitatively. A variety of novel methods for these studies have emerged in recent years, and Methods for Studying DNA/Drug Interactions highlights new and non-conventional methods for exploring nucleic acid/ligand interactions. Designed to present drug-developing companies with a survey of possible future techniques, the book compares their drawbacks and advantages with respect to commonly used tools. Perhaps more importantly, this book was written to inspire young scientists to continue to advance these methods into fruition, especially in light of current capabilities for assay miniaturization and enhanced sensitivity using microfluidics and nanomaterials.
This book spans diverse aspects of modified nucleic acids, from chemical synthesis and spectroscopy to in vivo applications, and highlights studies on chemical modifications of the backbone and nucleobases. Topics discussed include fluorescent pyrimidine and purine analogs, enzymatic approaches to the preparation of modified nucleic acids, emission and electron paramagnetic resonance (EPR) spectroscopy for studying nucleic acid structure and dynamics, non-covalent binding of low- and high-MW ligands to nucleic acids and the design of unnatural base pairs. This unique book addresses new developments and is designed for graduate level and professional research purposes.
|
![]() ![]() You may like...Not available
Discovering Daniel - Finding Our Hope In…
Amir Tsarfati, Rick Yohn
Paperback
|