Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 14 of 14 matches in All Departments
This accessible monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary differential equations and evolution equations. It is self-contained and unified in presentation, and provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, Picard operators technique, critical point theory and semigroups theory. This book is based on the research work done so far by the author and other experts, and contains comprehensive up-to-date materials on the topic.In this third edition, four new topics have been added: Hilfer fractional evolution equations and infinite interval problems, oscillations and nonoscillations, fractional Hamiltonian systems, fractional Rayleigh-Stokes equations, and wave equations. The bibliography has also been updated and expanded.This book is useful to researchers, graduate or PhD students dealing with fractional calculus and applied analysis, differential equations, and related areas of research.
"Eco- and Renewable Energy Materials" provides a survey of the current topics and the major developmental trends in the rapidly growing research area of clean energy materials. This book covers, but is not limited to, photochemical materials (fuels from light), fuel cells (electricity from fuels), batteries (electricity storage), and hydrogen production and storage. This book is intended as a vehicle for the dissemination of research results on energy-based material science in the form of commissioned reviews and commentaries. This book is for scientists and engineers interested in energy-related materials, compounds and electronic devices. Prof. Yong Zhou is currently serving as a full professor at the Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, China.
This edited volume expands the scope of risk management beyond finance to include resources and environment issues in China. It presents the state-of-the-art approaches of using risk management to effectively manage resources and environment. Both case studies and theoretical methodologies are discussed.
Fractional evolution equations provide a unifying framework to investigate wellposedness of complex systems with fractional order derivatives. This monograph presents the existence, attractivity, stability, periodic solutions and control theory for time fractional evolution equations. The book contains an up-to-date and comprehensive stuff on the topic.
This monograph is devoted to the existence and stability (Ulam-Hyers-Rassias stability and asymptotic stability) of solutions for various classes of functional differential equations or inclusions involving the Hadamard or Hilfer fractional derivative. Some equations present delay which may be finite, infinite, or state-dependent. Others are subject to impulsive effect which may be fixed or non-instantaneous.Readers will find the book self-contained and unified in presentation. It provides the necessary background material required to go further into the subject and explores the rich research literature in detail. Each chapter concludes with a section devoted to notes and bibliographical remarks and all abstract results are illustrated by examples. The tools used include many classical and modern nonlinear analysis methods such as fixed-point theorems, as well as some notions of Ulam stability, attractivity and the measure of non-compactness as well as the measure of weak noncompactness. It is useful for researchers and graduate students for research, seminars, and advanced graduate courses, in pure and applied mathematics, physics, mechanics, engineering, biology, and all other applied sciences.
This invaluable monograph is devoted to a rapidly developing area on the research of qualitative theory of fractional ordinary and partial differential equations. It provides the readers the necessary background material required to go further into the subject and explore the rich research literature. The tools used include many classical and modern nonlinear analysis methods such as fixed point theory, measure of noncompactness method, topological degree method, the technique of Picard operators, critical point theory and semigroup theory. Based on the research work carried out by the authors and other experts during the past seven years, the contents are very recent and comprehensive.In this edition, two new topics have been added, that is, fractional impulsive differential equations, and fractional partial differential equations including fractional Navier-Stokes equations and fractional diffusion equations.
Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources.
"Eco- and Renewable Energy Materials" provides a survey of the current topics and the major developmental trends in the rapidly growing research area of clean energy materials. This book covers, but is not limited to, photochemical materials (fuels from light), fuel cells (electricity from fuels), batteries (electricity storage), and hydrogen production and storage. This book is intended as a vehicle for the dissemination of research results on energy-based material science in the form of commissioned reviews and commentaries. This book is for scientists and engineers interested in energy-related materials, compounds and electronic devices. Prof. Yong Zhou is currently serving as a full professor at the Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, China.
This edited volume expands the scope of risk management beyond finance to include resources and environment issues in China. It presents the state-of-the-art approaches of using risk management to effectively manage resources and environment. Both case studies and theoretical methodologies are discussed.
Over the last decade it has been shown that orphan G protein-coupled receptors (GPCRs) can be used as targets to discover novel neuropeptides. A dozen neuropeptides have been identified through this approach. Each of these neuropeptides has opened new doors for our understanding of fundamental physiological or behavioral responses. For example the orexins, MCH and ghrelin carry fundamental roles in regulating food intake while neuropeptide S, neuromedin S, the prokineticins and the orexins are major players in modulating sleep and circadian rhythms. The chapters of this book review the latest research in the field, most of them are written by the original discoverers of the respective novel neuropeptide. Emphasis is set not only on their discovery but also on their functional significance. Since many of these neuropeptides are part of drug discovery programs, this book impacts academic as well as pharmaceutical research.
Fractional evolution inclusions are an important form of differential inclusions within nonlinear mathematical analysis. They are generalizations of the much more widely developed fractional evolution equations (such as time-fractional diffusion equations) seen through the lens of multivariate analysis. Compared to fractional evolution equations, research on the theory of fractional differential inclusions is however only in its initial stage of development. This is important because differential models with the fractional derivative providing an excellent instrument for the description of memory and hereditary properties, and have recently been proved valuable tools in the modeling of many physical phenomena. The fractional order models of real systems are always more adequate than the classical integer order models, since the description of some systems is more accurate when the fractional derivative is used. The advantages of fractional derivatization become evident in modeling mechanical and electrical properties of real materials, description of rheological properties of rocks and in various other fields. Such models are interesting for engineers and physicists as well as so-called pure mathematicians. Phenomena investigated in hybrid systems with dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various differential inclusions, both linear and nonlinear. Fractional Evolution Equations and Inclusions is devoted to a rapidly developing area of the research for fractional evolution equations & inclusions and their applications to control theory. It studies Cauchy problems for fractional evolution equations, and fractional evolution inclusions with Hille-Yosida operators. It discusses control problems for systems governed by fractional evolution equations. Finally it provides an investigation of fractional stochastic evolution inclusions in Hilbert spaces.
Over the last decade it has been shown that orphan G protein-coupled receptors (GPCRs) can be used as targets to discover novel neuropeptides. A dozen neuropeptides have been identified through this approach. Each of these neuropeptides has opened new doors for our understanding of fundamental physiological or behavioral responses. For example the orexins, MCH and ghrelin carry fundamental roles in regulating food intake while neuropeptide S, neuromedin S, the prokineticins and the orexins are major players in modulating sleep and circadian rhythms. The chapters of this book review the latest research in the field, most of them are written by the original discoverers of the respective novel neuropeptide. Emphasis is set not only on their discovery but also on their functional significance. Since many of these neuropeptides are part of drug discovery programs, this book impacts academic as well as pharmaceutical research. Written for: Neurobiologists, endocrinologists, pharmaceutical companies
Nanoscience is a rapidly evolving field of studying and working with matter on an ultra-small scale, which was invented late in the twentieth century. Learning from bio-systems in nature, scientists began to design experiments to specifically couple biology with nanofabricated materials, devices and tools. Such bio-inspired nanoscience utilises biological processes, shape, chemical and physical functionality of biomolecules for atom-levelly controllable fabrication of advanced materials with extreme precision. This book presents the current knowledge and understanding of bio-inspired nanoscience by a collection of eleven impressive chapters, covering several remarkable aspects. This book will also provide researchers in these fields with the newest developments in this rapidly evolving field for advancing research.
|
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
|