0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Hardcover, 1st ed. 2019):... Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Hardcover, 1st ed. 2019)
Mitsuhiro T. Nakao, Michael Plum, Yoshitaka Watanabe
R1,983 Discovery Miles 19 830 Ships in 10 - 15 working days

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Paperback, 1st ed. 2019):... Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Paperback, 1st ed. 2019)
Mitsuhiro T. Nakao, Michael Plum, Yoshitaka Watanabe
R3,836 Discovery Miles 38 360 Ships in 18 - 22 working days

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Confessions Of An Alleged Good Girl
Joya Goffney Paperback R264 R242 Discovery Miles 2 420
Peace Be Still - A Pugusaur Adventure II
Charles E Pickens Hardcover R640 R579 Discovery Miles 5 790
My Magic Jacket
Martha Woodruff Hardcover R541 R500 Discovery Miles 5 000
Little Brown Boy - You Can Do All You…
Robert Marshall Hardcover R555 R510 Discovery Miles 5 100
Santa Makes Four
Veronica Logan Hardcover R544 R503 Discovery Miles 5 030
Tomten
Viktor Rydberg Hardcover R659 R593 Discovery Miles 5 930
You Are A Champion - How To Be The Best…
Marcus Rashford Paperback R275 R249 Discovery Miles 2 490
Oliver and Friends - Volume 1
Johanna Cona Hardcover R695 R655 Discovery Miles 6 550
What it Means to be a Big Sister
Lindsey Coker Luckey Hardcover R538 Discovery Miles 5 380
The Adventures of Clay - The Hidden…
Timothy Kosta Hardcover R585 Discovery Miles 5 850

 

Partners