0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (1)
  • R2,500 - R5,000 (1)
  • -
Status
Brand

Showing 1 - 2 of 2 matches in All Departments

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Hardcover, 1st ed. 2019):... Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Hardcover, 1st ed. 2019)
Mitsuhiro T. Nakao, Michael Plum, Yoshitaka Watanabe
R2,577 R2,079 Discovery Miles 20 790 Save R498 (19%) Ships in 12 - 17 working days

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Paperback, 1st ed. 2019):... Numerical Verification Methods and Computer-Assisted Proofs for Partial Differential Equations (Paperback, 1st ed. 2019)
Mitsuhiro T. Nakao, Michael Plum, Yoshitaka Watanabe
R3,577 R3,285 Discovery Miles 32 850 Save R292 (8%) Out of stock

In the last decades, various mathematical problems have been solved by computer-assisted proofs, among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz attractor, the famous four-color problem, and more. In many cases, computer-assisted proofs have the remarkable advantage (compared with a "theoretical" proof) of additionally providing accurate quantitative information. The authors have been working more than a quarter century to establish methods for the verified computation of solutions for partial differential equations, mainly for nonlinear elliptic problems of the form - u=f(x,u, u) with Dirichlet boundary conditions. Here, by "verified computation" is meant a computer-assisted numerical approach for proving the existence of a solution in a close and explicit neighborhood of an approximate solution. The quantitative information provided by these techniques is also significant from the viewpoint of a posteriori error estimates for approximate solutions of the concerned partial differential equations in a mathematically rigorous sense. In this monograph, the authors give a detailed description of the verified computations and computer-assisted proofs for partial differential equations that they developed. In Part I, the methods mainly studied by the authors Nakao and Watanabe are presented. These methods are based on a finite dimensional projection and constructive a priori error estimates for finite element approximations of the Poisson equation. In Part II, the computer-assisted approaches via eigenvalue bounds developed by the author Plum are explained in detail. The main task of this method consists of establishing eigenvalue bounds for the linearization of the corresponding nonlinear problem at the computed approximate solution. Some brief remarks on other approaches are also given in Part III. Each method in Parts I and II is accompanied by appropriate numerical examples that confirm the actual usefulness of the authors' methods. Also in some examples practical computer algorithms are supplied so that readers can easily implement the verification programs by themselves.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Colleen Pencil Crayons - Assorted…
R127 Discovery Miles 1 270
Casio LW-200-7AV Watch with 10-Year…
R999 R884 Discovery Miles 8 840
Joseph Joseph Index Mini (Graphite)
R642 Discovery Miles 6 420
The Internship / The Watch
Vince Vaughn, Owen Wilson, … DVD  (1)
R27 Discovery Miles 270
Bunty 380GSM Golf Towel (30x50cm)(3…
R500 R255 Discovery Miles 2 550
Brother LX27NT Portable Free Arm Sewing…
 (1)
R3,999 R2,999 Discovery Miles 29 990
Harry Potter Wizard Wand - In…
 (3)
R830 Discovery Miles 8 300
Alcolin Super Glue 3 X 3G
R64 Discovery Miles 640
Swiss Miele Vacuum Bags (4 x Bags | 2 x…
 (8)
R199 R166 Discovery Miles 1 660
Ergo Mouse Pad Wrist Rest Support
R399 R149 Discovery Miles 1 490

 

Partners