Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 2 of 2 matches in All Departments
This book presents a fresh, original exposition of the foundations
of classical electrodynamics in the tradition of the so-called
metric-free approach. The fundamental structure of classical
electrodynamics is described in the form of six axioms: (1)
electric charge conservation, (2) existence of the Lorentz force,
(3) magnetic flux conservation, (4) localization of electromagnetic
energy-momentum, (5) existence of an electromagnetic spacetime
relation, and (6) splitting of the electric current into material
and external pieces.
In this book we display the fundamental structure underlying classical electro dynamics, i. e., the phenomenological theory of electric and magnetic effects. The book can be used as a textbook for an advanced course in theoretical electrodynamics for physics and mathematics students and, perhaps, for some highly motivated electrical engineering students. We expect from our readers that they know elementary electrodynamics in the conventional (1 + 3)-dimensional form including Maxwell's equations. More over, they should be familiar with linear algebra and elementary analysis, in cluding vector analysis. Some knowledge of differential geometry would help. Our approach rests on the metric-free integral formulation of the conservation laws of electrodynamics in the tradition of F. Kottler (1922), E. Cartan (1923), and D. van Dantzig (1934), and we stress, in particular, the axiomatic point of view. In this manner we are led to an understanding of why the Maxwell equa tions have their specific form. We hope that our book can be seen in the classical tradition of the book by E. J. Post (1962) on the Formal Structure of Electro magnetics and of the chapter "Charge and Magnetic Flux" of the encyclopedia article on classical field theories by C. Truesdell and R. A. Toupin (1960), in cluding R. A. Toupin's Bressanone lectures (1965); for the exact references see the end of the introduction on page 11. ."
|
You may like...
|