0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 4 of 4 matches in All Departments

Checkpoint Controls and Targets in Cancer Therapy (Hardcover, 2009 ed.): Zahid H. Siddik Checkpoint Controls and Targets in Cancer Therapy (Hardcover, 2009 ed.)
Zahid H. Siddik
R4,418 Discovery Miles 44 180 Ships in 10 - 15 working days

Much work over the last two decades has firmly established that loss of cell cycle checkpoint regulation, and resultant unabated cellular proliferation, is an inherent characteristic of cancer. This loss may occur through aberration in any single component involved in signal transduction pathways that orchestrate checkpoint regulation, which may manifest through either a failure to activate the checkpoint or a failure to respond to the activated checkpoint. In normal cells, checkpoint pathways are activated when genetic or cellular homeostasis is compromised, and signals are then transduced to re-stabilize homeostasis, and, failing this, to activate the apoptotic machinery to induce a cellular suicidal response. This implies that both survival and cell death pathways are induced following checkpoint activation, and that the final decision is dependant on the net result of integrating the two sets of signals.

It is intriguing that checkpoint pathways are also critical in cancer therapy to provide an apoptotic stimulus when cellular damage induced by the therapeutic agent is detected by the sensor system. Therefore, it is not surprising that failure in pro-survival checkpoint response will render tumor cells hypersensitive to cytotoxics and, conversely, failure in pro-apoptotic checkpoint response will induce genetic instability and/or therapeutic resistance. Understanding the intricacies of checkpoint response is, therefore, central to the design of therapeutic regimen that will enhance antitumor effects. Although early versions of this design entail combination of cytotoxic agents with cell cycle or checkpoint inhibitors, a greater understanding of the concepts could make such combinations clinically more effective. The contributions in this book will consolidate the current state of knowledge on checkpoint responses that may lay the foundation for hypothesis-driven rational approaches in advancing the management of cancer.

The immediate attraction of the book to the scientific community is that it represents a timely opportunity to build upon existing concepts of checkpoints to expand our understanding of the inner workings of the critical checkpoint machinery. The present understanding has provided ample appreciation that response to checkpoint activation is manifested through coordinated inhibition of cyclin-dependent kinase (CDK) complexes in G1, S and/or the G2 phase in order to arrest the cell cycle. Kinase inhibition can occur through several mechanisms, including inhibitory phosphorylation of CDK, destruction of the cognate cyclins, and recruitment of CDK inhibitors from the INK and WAF1/CIP1 families. However, the wealth of information from recent discoveries needs to be examined critically to consolidate our conceptual knowledge of checkpoints. At the same time, there is acute awareness in the diversity of checkpoint response between cytotoxic agents, and this serves as a reminder of the magnitude of complexity that is inherent in checkpoint regulation. This volume is intended to bring the cancer research community closer toward an improved understanding of this regulation, how checkpoint abnormalities can impact negatively on cancer therapy, and emerging strategies to target checkpoint response as a therapeutic end-point.

Drug Resistance in Cancer Cells (Hardcover, 2009 ed.): Susan E. Bates Drug Resistance in Cancer Cells (Hardcover, 2009 ed.)
Susan E. Bates; Edited by Kapil Mehta, Zahid H. Siddik
R4,568 Discovery Miles 45 680 Ships in 10 - 15 working days

It was estimated that in 2008, 1,437,180 patients would receive a new cancer diagnosisand 565,650individualswould die of cancer (Jemal et al. 2008).Since the vast majority of patients dying of cancer will have had anticancer therapy, both c- ventional chemotherapy and novel targeted therapy, it can be concluded that these patients are dying with drug resistant cancer. The term multidrug resistance is also apt - in that these patients die after having undergone multiple rounds of different and structurally unrelated cancer therapies. However, for some, the concept of m- tidrug resistance is a worn out idea, stemming from disappointment with the drug resistancereversalstrategiesthatwerecarriedoutinthe1990susingpumpinhibitors to block drug resistance mediated by P-glycoprotein, product of the MDR-1 gene. However, if one takes the larger de?nition - multidrug resistance as simultaneous resistance to multiple structurally unrelated anticancer therapies - its existence c- not be denied. The purpose of this book is to explore new concepts related to drug resistance in cancer, including resistance to the new molecularly targeted agents. Perhaps new terminology is needed for resistance that occurs following therapy with the targeted agents: Novel Targeted Agent Resistance (NTR). Alternatively, we can return to the original de?nition of multidrug resistance as simply the res- tance to multipleagents that occurs in the course of normalcancer progression.This resistance is likely to be mediated by many factors.

Checkpoint Controls and Targets in Cancer Therapy (Paperback, 2009 ed.): Zahid H. Siddik Checkpoint Controls and Targets in Cancer Therapy (Paperback, 2009 ed.)
Zahid H. Siddik
R4,367 Discovery Miles 43 670 Ships in 10 - 15 working days

Much work over the last two decades has firmly established that loss of cell cycle checkpoint regulation, and resultant unabated cellular proliferation, is an inherent characteristic of cancer. This loss may occur through aberration in any single component involved in signal transduction pathways that orchestrate checkpoint regulation, which may manifest through either a failure to activate the checkpoint or a failure to respond to the activated checkpoint. In normal cells, checkpoint pathways are activated when genetic or cellular homeostasis is compromised, and signals are then transduced to re-stabilize homeostasis, and, failing this, to activate the apoptotic machinery to induce a cellular suicidal response. This implies that both survival and cell death pathways are induced following checkpoint activation, and that the final decision is dependant on the net result of integrating the two sets of signals.

It is intriguing that checkpoint pathways are also critical in cancer therapy to provide an apoptotic stimulus when cellular damage induced by the therapeutic agent is detected by the sensor system. Therefore, it is not surprising that failure in pro-survival checkpoint response will render tumor cells hypersensitive to cytotoxics and, conversely, failure in pro-apoptotic checkpoint response will induce genetic instability and/or therapeutic resistance. Understanding the intricacies of checkpoint response is, therefore, central to the design of therapeutic regimen that will enhance antitumor effects. Although early versions of this design entail combination of cytotoxic agents with cell cycle or checkpoint inhibitors, a greater understanding of the concepts could make such combinations clinically more effective. The contributions in this book will consolidate the current state of knowledge on checkpoint responses that may lay the foundation for hypothesis-driven rational approaches in advancing the management of cancer.

The immediate attraction of the book to the scientific community is that it represents a timely opportunity to build upon existing concepts of checkpoints to expand our understanding of the inner workings of the critical checkpoint machinery. The present understanding has provided ample appreciation that response to checkpoint activation is manifested through coordinated inhibition of cyclin-dependent kinase (CDK) complexes in G1, S and/or the G2 phase in order to arrest the cell cycle. Kinase inhibition can occur through several mechanisms, including inhibitory phosphorylation of CDK, destruction of the cognate cyclins, and recruitment of CDK inhibitors from the INK and WAF1/CIP1 families. However, the wealth of information from recent discoveries needs to be examined critically to consolidate our conceptual knowledge of checkpoints. At the same time, there is acute awareness in the diversity of checkpoint response between cytotoxic agents, and this serves as a reminder of the magnitude of complexity that is inherent in checkpoint regulation. This volume is intended to bring the cancer research community closer toward an improved understanding of this regulation, how checkpoint abnormalities can impact negatively on cancer therapy, and emerging strategies to target checkpoint response as a therapeutic end-point.

Drug Resistance in Cancer Cells (Paperback, Softcover reprint of hardcover 1st ed. 2009): Susan E. Bates Drug Resistance in Cancer Cells (Paperback, Softcover reprint of hardcover 1st ed. 2009)
Susan E. Bates; Edited by Kapil Mehta, Zahid H. Siddik
R4,374 Discovery Miles 43 740 Ships in 10 - 15 working days

It was estimated that in 2008, 1,437,180 patients would receive a new cancer diagnosisand 565,650individualswould die of cancer (Jemal et al. 2008).Since the vast majority of patients dying of cancer will have had anticancer therapy, both c- ventional chemotherapy and novel targeted therapy, it can be concluded that these patients are dying with drug resistant cancer. The term multidrug resistance is also apt - in that these patients die after having undergone multiple rounds of different and structurally unrelated cancer therapies. However, for some, the concept of m- tidrug resistance is a worn out idea, stemming from disappointment with the drug resistancereversalstrategiesthatwerecarriedoutinthe1990susingpumpinhibitors to block drug resistance mediated by P-glycoprotein, product of the MDR-1 gene. However, if one takes the larger de?nition - multidrug resistance as simultaneous resistance to multiple structurally unrelated anticancer therapies - its existence c- not be denied. The purpose of this book is to explore new concepts related to drug resistance in cancer, including resistance to the new molecularly targeted agents. Perhaps new terminology is needed for resistance that occurs following therapy with the targeted agents: Novel Targeted Agent Resistance (NTR). Alternatively, we can return to the original de?nition of multidrug resistance as simply the res- tance to multipleagents that occurs in the course of normalcancer progression.This resistance is likely to be mediated by many factors.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Macmillan, Kennedy and the Cuban Missile…
L. Scott Hardcover R2,881 Discovery Miles 28 810
Romantic Relationships in a Time of…
Julia Carter, Lorena Arocha Hardcover R2,894 Discovery Miles 28 940
The American Approach to Foreign Affairs…
Roger S. Whitcomb Hardcover R2,209 Discovery Miles 22 090
Ruti Sela. For the Record
Joshua Simon, Ruti Sela Paperback R610 Discovery Miles 6 100
The Ethics of Captivity
Lori Gruen Hardcover R4,078 Discovery Miles 40 780
Metaforma
Nexumorphic Hardcover R930 Discovery Miles 9 300
Enlightenment in an Age of Destruction…
Christopher Britt, Paul Fenn, … Hardcover R2,873 Discovery Miles 28 730
The Consumer Citizen
Ethan Porter Hardcover R2,583 Discovery Miles 25 830
Terreur in Kaboel
Hannelie Groenewald Paperback R265 R209 Discovery Miles 2 090
Indentured - Behind The Scenes At Gupta…
Rajesh Sundaram Paperback  (2)
R280 R259 Discovery Miles 2 590

 

Partners