Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 9 of 9 matches in All Departments
Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control covers a wide range of topics in the areas of vibration testing, instrumentation, and analysis of civil engineering and critical infrastructure. It explains how recent research, development, and applications in experimental vibration analysis of civil engineering structures have progressed significantly due to advancements in the fields of sensor and testing technologies, instrumentation, data acquisition systems, computer technology, computational modeling and simulation of large and complex civil infrastructure systems. The book also examines how cutting-edge artificial intelligence and data analytics can be applied to infrastructure systems. Features: Explains how recent technological developments have resulted in addressing the challenge of designing more resilient infrastructure Examines numerous research studies conducted by leading scholars in the field of infrastructure systems and civil engineering Presents the most emergent fields of civil engineering design, such as data analytics and Artificial Intelligence for the analysis and performance assessment of infrastructure systems and their resilience Emphasizes the importance of an interdisciplinary approach to develop the modeling, analysis, and experimental tools for designing more resilient and intelligent infrastructures Appropriate for practicing engineers and upper-level students, Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control serves as a strategic roadmap for further research in the field of vibration testing and instrumentation of infrastructure systems.
Structural Health Monitoring and Integrity Management is a collection of the papers presented at the 2nd International Conference of Structural Health Monitoring and Integrity Management (ICSHMIM2014, Nanjing, China, 24-26 September 2014), and addresses the most recent developments in the field of Structural Health Monitoring (SHM) and integrity management from around the world. It is also generally acknowledged that a clear advantage of SHM-technology over traditional NDT methods is the closer interaction and automation of sensing, diagnostics, prognostics and condition-based maintenance that SHM enables. As SHM is a system-level approach which integrates sensors/actuators networks with structures, software to interpret sensor signals, and hardware to process and manage the signals, its maturity based on the complexity and targeted solutions can be classified into four different sequential levels: detection, identification, quantification, and decision. Detection is the lowest maturity level that the technology can achieve. Once detection is confirmed with a highdegree of confidence, identification of the occurrence of the event in time and space domain is critical, which then can potentially lead to the quantification of the event. A more accurate quantification may lead to a better decision, which provides a much more efficient management solution for the structures than traditional inspection techniques, leading to a system platform for autonomous or intelligent structures. Structural Health Monitoring and Integrity Management will be invaluable to academics and professionals interested in applications encompassing traditional aerospace structures and civil infrastructures, in special equipment and marine/offshore structures, as well as in a variety of other structures and platforms.
Structures Strengthened with Bonded Composites presents a comprehensive resource on the strengthening of concrete, reinforced and prestressed concrete, masonry, steel and other composite structures using externally-bonded FRP composites. The book emphasizes a systematic and fundamental investigation on bonding and debonding behavior of the FRP-concrete interface and structural performances of FRP-strengthened structures with a combination of experimental, theoretical and numerical studies. This book will appeal to all those concerned with strengthening and retrofitting of existing structures from the effect of additional anticipated loads in the civil sector.
With rapid urbanization in developing countries and the emergence of smart systems and integrated intelligent devices, the new generation of infrastructure will be smarter and more efficient. However, due to natural and anthropomorphic hazards, as well as the adverse impact of climate change, civil infrastructure systems are increasingly vulnerable. Therefore, future-proofing and designing resilience into infrastructure is one of the biggest challenges facing the industry and governments in all developing and industrialized societies. This book provides a comprehensive overview of infrastructure resiliency, new developments in this emerging field and its scopes, including ecology and sustainability, and the challenges involved in building more resilient civil infrastructure systems. Moreover, it introduces a strategic roadmap for effective and efficient methods needed for modeling, designing, and assessing resiliency. Features: Includes contributions from internationally recognized scholars in the emerging field of infrastructure resilience. Covers a broad range of topics in infrastructure resilience such as disaster assessment, civil infrastructure and lifeline systems, natural hazard mitigation, and seismic protection. Includes practical global case studies and leading-edge research from several countries. Presents an interdisciplinary approach in addressing the challenges in the emerging field of infrastructure resilience Resilience of Critical Infrastructure Systems: Emerging Developments and Future Challenges serves as a valuable resource for practicing professionals, researchers, and advanced students seeking practical, forward-looking guidance.
This book presents selected, peer-reviewed contributions from the 9th International Conference on Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2021), organized by the University of Tokyo and Saitama University from September 17-20, 2021 on the Hongo campus of the University of Tokyo, and hosted in an online format. The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation. The topics of EVACES 2021 included but were not limited to: damage identification and structural health monitoring; testing, sensing and modeling; vibration isolation and control; system and model identification; coupled dynamical systems (including human-structure, vehicle-structure, and soil-structure interaction); and application of advanced techniques involving the Internet of Things, robot, UAV, big data and artificial intelligence.
|
You may like...
Neural Approaches to Conversational…
Jianfeng Gao, Chenyan Xiong, …
Hardcover
R4,368
Discovery Miles 43 680
Stories of Love and Other Natural…
Jedidah Manalang Frederick
Hardcover
Eerste Liefde Omnibus 1 (3-In-1)
Janie Oosthuysen, Helen Brain
Paperback
|