0
Your cart

Your cart is empty

Browse All Departments
  • All Departments
Price
  • R1,000 - R2,500 (7)
  • R2,500 - R5,000 (4)
  • -
Status
Brand

Showing 1 - 11 of 11 matches in All Departments

Switching Arc Phenomena in Transmission Voltage Level Vacuum Circuit Breakers (Hardcover, 1st ed. 2021): Zhiyuan Liu, Jianhua... Switching Arc Phenomena in Transmission Voltage Level Vacuum Circuit Breakers (Hardcover, 1st ed. 2021)
Zhiyuan Liu, Jianhua Wang, Yingsan Geng, Zhenxing Wang
R4,925 Discovery Miles 49 250 Ships in 12 - 17 working days

Vacuum circuit breakers are widely used in distribution power systems for their advantages such as maintenance free and eco-friendly. Nowadays, most circuit breakers used at transmission voltage level are SF6 circuit breakers, but the SF6 they emit is one of the six greenhouse gases defined in Kyoto Protocol. Therefore, the development of transmission voltage level vacuum circuit breaker can help the environment. The switching arc phenomena in transmission voltage level vacuum circuit breakers are key issues to explore. This book focuses on the high-current vacuum arcs phenomena at transmission voltage level, especially on the anode spot phenomena, which significantly influence the success or failure of the short circuit current interruption. Then, it addresses the dielectric recovery property in current interruption. Next it explains how to determine the closing/opening displacement curve of transmission voltage level vacuum circuit breakers based on the vacuum arc phenomena. After that, it explains how to determine key design parameters for vacuum interrupters and vacuum circuit breakers at transmission voltage level. At the end, the most challenging issue for vacuum circuit breakers, capacitive switching in vacuum, is addressed. The contents of this book will benefit researchers and engineers in the field of power engineering, especially in the field of power circuit breakers and power switching technology.

Representation Learning for Natural Language Processing (2nd ed. 2023): Zhiyuan Liu, Yan-Kai Lin, Maosong Sun Representation Learning for Natural Language Processing (2nd ed. 2023)
Zhiyuan Liu, Yan-Kai Lin, Maosong Sun
R1,556 Discovery Miles 15 560 Ships in 12 - 17 working days

This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.

Switching Arc Phenomena in Transmission Voltage Level Vacuum Circuit Breakers (Paperback, 1st ed. 2021): Zhiyuan Liu, Jianhua... Switching Arc Phenomena in Transmission Voltage Level Vacuum Circuit Breakers (Paperback, 1st ed. 2021)
Zhiyuan Liu, Jianhua Wang, Yingsan Geng, Zhenxing Wang
R3,311 Discovery Miles 33 110 Ships in 10 - 15 working days

Vacuum circuit breakers are widely used in distribution power systems for their advantages such as maintenance free and eco-friendly. Nowadays, most circuit breakers used at transmission voltage level are SF6 circuit breakers, but the SF6 they emit is one of the six greenhouse gases defined in Kyoto Protocol. Therefore, the development of transmission voltage level vacuum circuit breaker can help the environment. The switching arc phenomena in transmission voltage level vacuum circuit breakers are key issues to explore. This book focuses on the high-current vacuum arcs phenomena at transmission voltage level, especially on the anode spot phenomena, which significantly influence the success or failure of the short circuit current interruption. Then, it addresses the dielectric recovery property in current interruption. Next it explains how to determine the closing/opening displacement curve of transmission voltage level vacuum circuit breakers based on the vacuum arc phenomena. After that, it explains how to determine key design parameters for vacuum interrupters and vacuum circuit breakers at transmission voltage level. At the end, the most challenging issue for vacuum circuit breakers, capacitive switching in vacuum, is addressed. The contents of this book will benefit researchers and engineers in the field of power engineering, especially in the field of power circuit breakers and power switching technology.

Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data - 17th China National... Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data - 17th China National Conference, CCL 2018, and 6th International Symposium, NLP-NABD 2018, Changsha, China, October 19-21, 2018, Proceedings (Paperback, 1st ed. 2018)
Maosong Sun, Ting Liu, Xiaojie Wang, Zhiyuan Liu, Yang Liu
R1,508 Discovery Miles 15 080 Ships in 10 - 15 working days

This book constitutes the proceedings of the 17th China National Conference on Computational Linguistics, CCL 2018, and the 6th International Symposium on Natural Language Processing Based on Naturally Annotated Big Data, NLP-NABD 2018, held in Changsha, China, in October 2018. The 33 full papers presented in this volume were carefully reviewed and selected from 84 submissions. They are organized in topical sections named: Semantics; machine translation; knowledge graph and information extraction; linguistic resource annotation and evaluation; information retrieval and question answering; text classification and summarization; social computing and sentiment analysis; and NLP applications.

Representation Learning for Natural Language Processing (2nd ed. 2023): Zhiyuan Liu, Yan-Kai Lin, Maosong Sun Representation Learning for Natural Language Processing (2nd ed. 2023)
Zhiyuan Liu, Yan-Kai Lin, Maosong Sun
R1,403 Discovery Miles 14 030 Ships in 10 - 15 working days

This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.

Network Embedding - Theories, Methods, and Applications (Paperback): Cheng Yang, Zhiyuan Liu, Cunchao Tu, Chuan Shi, Maosong Sun Network Embedding - Theories, Methods, and Applications (Paperback)
Cheng Yang, Zhiyuan Liu, Cunchao Tu, Chuan Shi, Maosong Sun
R1,711 Discovery Miles 17 110 Ships in 10 - 15 working days

heterogeneous graphs. Further, the book introduces different applications of NE such as recommendation and information diffusion prediction. Finally, the book concludes the methods and applications and looks forward to the future directions.

Representation Learning for Natural Language Processing (Paperback, 1st ed. 2020): Zhiyuan Liu, Yan-Kai Lin, Maosong Sun Representation Learning for Natural Language Processing (Paperback, 1st ed. 2020)
Zhiyuan Liu, Yan-Kai Lin, Maosong Sun
R1,368 Discovery Miles 13 680 Ships in 10 - 15 working days

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Introduction to Graph Neural Networks (Paperback): Zhiyuan Liu, Jie Zhou Introduction to Graph Neural Networks (Paperback)
Zhiyuan Liu, Jie Zhou
R1,670 Discovery Miles 16 700 Ships in 10 - 15 working days

Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool. This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.

Chinese Computational Linguistics - 18th China National Conference, CCL 2019, Kunming, China, October 18-20, 2019, Proceedings... Chinese Computational Linguistics - 18th China National Conference, CCL 2019, Kunming, China, October 18-20, 2019, Proceedings (Paperback, 1st ed. 2019)
Maosong Sun, Xuanjing Huang, Heng Ji, Zhiyuan Liu, Yang Liu
R1,598 Discovery Miles 15 980 Ships in 10 - 15 working days

This book constitutes the proceedings of the 18th China National Conference on Computational Linguistics, CCL 2019, held in Kunming, China, in October 2019. The 56 full papers presented in this volume were carefully reviewed and selected from 134 submissions. They were organized in topical sections named: linguistics and cognitive science, fundamental theory and methods of computational linguistics, information retrieval and question answering, text classification and summarization, knowledge graph and information extraction, machine translation and multilingual information processing, minority language processing, language resource and evaluation, social computing and sentiment analysis, NLP applications.

Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data - 15th China National... Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data - 15th China National Conference, CCL 2016, and 4th International Symposium, NLP-NABD 2016, Yantai, China, October 15-16, 2016, Proceedings (Paperback, 1st ed. 2016)
Maosong Sun, Xuanjing Huang, Hongfei Lin, Zhiyuan Liu, Yang Liu
R2,795 Discovery Miles 27 950 Ships in 10 - 15 working days

This book constitutes the proceedings of the 15th China National Conference on Computational Linguistics, CCL 2016, and the 4th International Symposium on Natural Language Processing Based on Naturally Annotated Big Data, NLP-NABD 2016, held in Yantai City, China, in October 2016. The 29 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 85 submissions. They were organized in topical sections named: semantics; machine translation; multilinguality in NLP; knowledge graph and information extraction; linguistic resource annotation and evaluation; information retrieval and question answering; text classification and summarization; social computing and sentiment analysis; and NLP applications.

Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data - 14th China National... Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data - 14th China National Conference, CCL 2015 and Third International Symposium, NLP-NABD 2015, Guangzhou, China, November 13-14, 2015, Proceedings (Paperback, 1st ed. 2015)
Maosong Sun, Zhiyuan Liu, Min Zhang, Yang Liu
R2,692 Discovery Miles 26 920 Ships in 10 - 15 working days

This book constitutes the refereed proceedings of the 14th China National Conference on Computational Linguistics, CCL 2014, and of the Third International Symposium on Natural Language Processing Based on Naturally Annotated Big Data, NLP-NABD 2015, held in Guangzhou, China, in November 2015. The 34 papers presented were carefully reviewed and selected from 283 submissions. The papers are organized in topical sections on lexical semantics and ontologies; semantics; sentiment analysis, opinion mining and text classification; machine translation; multilinguality in NLP; machine learning methods for NLP; knowledge graph and information extraction; discourse, coreference and pragmatics; information retrieval and question answering; social computing; NLP applications.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Workplace law
John Grogan Paperback R900 R820 Discovery Miles 8 200
Baby Dove Lotion Sensitive 200ml
R50 Discovery Miles 500
Snappy Tritan Bottle (1.5L)(Blue)
R229 R179 Discovery Miles 1 790
Lucky Lubricating Clipper Oil (100ml)
R49 R9 Discovery Miles 90
Samsung EO-IA500BBEGWW Wired In-ear…
R299 R249 Discovery Miles 2 490
Mission Impossible 7 - Dead Reckoning…
Tom Cruise Blu-ray disc R571 Discovery Miles 5 710
Pet Mall Mattress Style Pet Bed Medium…
R2,899 Discovery Miles 28 990
Lucky Define - Plastic 3 Head…
R390 Discovery Miles 3 900
Microsoft Xbox Series X Console (1TB)
 (21)
R14,999 Discovery Miles 149 990
Dune: Part 1
Timothee Chalamet, Rebecca Ferguson, … Blu-ray disc  (4)
R631 Discovery Miles 6 310

 

Partners