Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 7 of 7 matches in All Departments
Reactive systems are computing systems which are interactive, such as real-time systems, operating systems, concurrent systems, control systems, etc. They are among the most difficult computing systems to program. Temporal logic is a formal tool/language which yields excellent results in specifying reactive systems. This volume, the first of two, subtitled Specification, has a self-contained introduction to temporal logic and, more important, an introduction to the computational model for reactive programs, developed by Zohar Manna and Amir Pnueli of Stanford University and the Weizmann Institute of Science, Israel, respectively.
This book is about the verification of reactive systems. A reactive system is a system that maintains an ongoing interaction with its environment, as opposed to computing some final value on termination. The family of reactive systems includes many classes of programs whose correct and reliable construction is con sidered to be particularly challenging, including concurrent programs, embedded and process control programs, and operating systems. Typical examples of such systems are an air traffic control system, programs controlling mechanical devices such as a train, or perpetually ongoing processes such as a nuclear reactor. With the expanding use of computers in safety-critical areas, where failure is potentially disastrous, correctness is crucial. This has led to the introduction of formal verification techniques, which give both users and designers of software and hardware systems greater confidence that the systems they build meet the desired specifications. Framework The approach promoted in this book is based on the use of temporal logic for specifying properties of reactive systems, and develops an extensive verification methodology for proving that a system meets its temporal specification. Reactive programs must be specified in terms of their ongoing behavior, and temporal logic provides an expressive and natural language for specifying this behavior. Our framework for specifying and verifying temporal properties of reactive systems is based on the following four components: 1. A computational model to describe the behavior of reactive systems. The model adopted in this book is that of a Fair Transition System (FTS)."
Written with graduate and advanced undergraduate students in mind, this textbook introduces computational logic from the foundations of first-order logic to state-of-the-art decision procedures for arithmetic, data structures, and combination theories. The textbook also presents a logical approach to engineering correct software. Verification exercises are given to develop the reader's facility in specifying and verifying software using logic. The treatment of verification concludes with an introduction to the static analysis of software, an important component of modern verification systems. The final chapter outlines courses of further study.
Reactive systems are computing systems which are interactive, such as real-time systems, operating systems, concurrent systems, control systems, etc. They are among the most difficult computing systems to program. Temporal logic is a formal tool/language which yields excellent results in specifying reactive systems. This volume, the first of two, subtitled Specification, has a self-contained introduction to temporal logic and, more important, an introduction to the computational model for reactive programs, developed by Zohar Manna and Amir Pnueli of Stanford University and the Weizmann Institute of Science, Israel, respectively.
This book is about the verification of reactive systems. A reactive system is a system that maintains an ongoing interaction with its environment, as opposed to computing some final value on termination. The family of reactive systems includes many classes of programs whose correct and reliable construction is con sidered to be particularly challenging, including concurrent programs, embedded and process control programs, and operating systems. Typical examples of such systems are an air traffic control system, programs controlling mechanical devices such as a train, or perpetually ongoing processes such as a nuclear reactor. With the expanding use of computers in safety-critical areas, where failure is potentially disastrous, correctness is crucial. This has led to the introduction of formal verification techniques, which give both users and designers of software and hardware systems greater confidence that the systems they build meet the desired specifications. Framework The approach promoted in this book is based on the use of temporal logic for specifying properties of reactive systems, and develops an extensive verification methodology for proving that a system meets its temporal specification. Reactive programs must be specified in terms of their ongoing behavior, and temporal logic provides an expressive and natural language for specifying this behavior. Our framework for specifying and verifying temporal properties of reactive systems is based on the following four components: 1. A computational model to describe the behavior of reactive systems. The model adopted in this book is that of a Fair Transition System (FTS)."
Written with graduate and advanced undergraduate students in mind, this textbook introduces computational logic from the foundations of first-order logic to state-of-the-art decision procedures for arithmetic, data structures, and combination theories. The textbook also presents a logical approach to engineering correct software. Verification exercises are given to develop the reader's facility in specifying and verifying software using logic. The treatment of verification concludes with an introduction to the static analysis of software, an important component of modern verification systems. The final chapter outlines courses of further study.
Defining his subject as making the art of verifying computer programs (debugging) into a science, the author addresses both practical and theoretical aspects of the process. A self-contained treatment, it includes selected concepts of computability theory and mathematical logic, and each chapter concludes with bibliographic remarks, references, and problems. This book is a classic text on sequential program verification; it has been widely translated from the original Hebrew and is much in demand among graduate students in the field of computer science (it may also be used as an undergraduate text for advanced classes). Unabridged republication of the edition published by McGraw-Hill, New York, 1974.
|
You may like...
1 Recce: Volume 3 - Onsigbaarheid Is Ons…
Alexander Strachan
Paperback
Heart Of A Strong Woman - From Daveyton…
Xoliswa Nduneni-Ngema, Fred Khumalo
Paperback
Palaces Of Stone - Uncovering Ancient…
Mike Main, Thomas Huffman
Paperback
|