![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence
Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.
This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods. Gerard Biau is a professor at Universite Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).
Increasingly powerful and diverse computing technologies have the potential to tackle ever greater and more complex problems and dilemmas in engineering and science disciplines. Principal Concepts in Applied Evolutionary Computation: Emerging Trends provides an introduction to the important interdisciplinary discipline of evolutionary computation, an artificial intelligence field that combines the principles of computational intelligence with the mechanisms of the theory of evolution. Academics and practicing field professionals will find this reference useful as they break into the emerging and complex world of evolutionary computation, learning to harness and utilize this exciting new interdisciplinary field.
Emerging Trends in Image Processing, Computer Vision, and Pattern Recognition discusses the latest in trends in imaging science which at its core consists of three intertwined computer science fields, namely: Image Processing, Computer Vision, and Pattern Recognition. There is significant renewed interest in each of these three fields fueled by Big Data and Data Analytic initiatives including but not limited to; applications as diverse as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. These three core topics discussed here provide a solid introduction to image processing along with low-level processing techniques, computer vision fundamentals along with examples of applied applications and pattern recognition algorithms and methodologies that will be of value to the image processing and computer vision research communities. Drawing upon the knowledge of recognized experts with years of practical experience and discussing new and novel applications Editors' Leonidas Deligiannidis and Hamid Arabnia cover; Many perspectives of image processing spanning from fundamental mathematical theory and sampling, to image representation and reconstruction, filtering in spatial and frequency domain, geometrical transformations, and image restoration and segmentation Key application techniques in computer vision some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication Pattern recognition algorithms including but not limited to; Supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. How to use image processing and visualization to analyze big data.
The proliferation of computers in business requires increased managerial expertise in decision support systems and expert systems. Managers, executives, and scholars will find this in-depth examination of the latest tools and technologies available for decision support invaluable. The book provides a clear and complete discussion of the foundations and management applications of decision support, expert systems, artificial intelligence, and other management support systems. Practical examples are provided throughout, giving the business professional a useful tool for evaluating and utilizing the variety of decision support and information technologies available. In addition, Bidgoli explores the growing field of applicable artificial intelligence, including expert systems, fuzzy logic, and neural networks. This book enhances expertise in a succinct, practical, and readable way.
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.
The DARPA Robotics Challenge was a robotics competition that took place in Pomona, California USA in June 2015. The competition was the culmination of 33 months of demanding work by 23 teams and required humanoid robots to perform challenging locomotion and manipulation tasks in a mock disaster site. The challenge was conceived as a response to the Japanese Fukushima nuclear disaster of March 2011. The Fukushima disaster was seen as an ideal candidate for robotic intervention since the risk of exposure to radiation prevented human responders from accessing the site. This volume, edited by Matthew Spenko, Stephen Buerger, and Karl Iagnemma, includes commentary by the organizers, overall analysis of the results, and documentation of the technical efforts of 15 competing teams. The book provides an important record of the successes and failures involved in the DARPA Robotics Challenge and provides guidance for future needs to be addressed by policy makers, funding agencies, and the robotics research community. Many of the papers in this volume were initially published in a series of special issues of the Journal of Field Robotics. We have proudly collected versions of those papers in this STAR volume.
There is a deep desire in men, in order to reproduce intelligence and place it in a machine. Neural Networks are an attempt to reproduce the synaptic connections of our brain in a computer. Duplicating the way we use our neurons to think in a machine, it is expected to have a device that could be able to do intelligent tasks, the ones reserved just to humans some time ago. Neural Network is a reality now, not a fantasy, and they have been made in order to recognize patterns (a face, a photograph or a song, are patterns) and forecast trends. I have seen many books about this subject in my life. All of them are hard to read, and tedious to learn, so I decided to make my own one. For beginner readers, I have tried to use a simple language, in order to be understood by anyone who wants to know about nets. An easy to read, practical and concise work. If you are interested in the brain functions and how can we simulate it in a computer, youll get here a differenty to penetrate into their secrets. For advanced readers who want to make their own nets, I have included a methodology for building neural networks and complete sample computer source-code with tricks that will save you a lot of time while designing it.
This book contains 16 chapters by researchers working in various fields of data science. They focus on theory and applications in language technologies, optimization, computational thinking, intelligent decision support systems, decomposition of signals, model-driven development methodologies, interoperability of enterprise applications, anomaly detection in financial markets, 3D virtual reality, monitoring of environmental data, convolutional neural networks, knowledge storage, data stream classification, and security in social networking. The respective papers highlight a wealth of issues in, and applications of, data science. Modern technologies allow us to store and transfer large amounts of data quickly. They can be very diverse - images, numbers, streaming, related to human behavior and physiological parameters, etc. Whether the data is just raw numbers, crude images, or will help solve current problems and predict future developments, depends on whether we can effectively process and analyze it. Data science is evolving rapidly. However, it is still a very young field. In particular, data science is concerned with visualizations, statistics, pattern recognition, neurocomputing, image analysis, machine learning, artificial intelligence, databases and data processing, data mining, big data analytics, and knowledge discovery in databases. It also has many interfaces with optimization, block chaining, cyber-social and cyber-physical systems, Internet of Things (IoT), social computing, high-performance computing, in-memory key-value stores, cloud computing, social computing, data feeds, overlay networks, cognitive computing, crowdsource analysis, log analysis, container-based virtualization, and lifetime value modeling. Again, all of these areas are highly interrelated. In addition, data science is now expanding to new fields of application: chemical engineering, biotechnology, building energy management, materials microscopy, geographic research, learning analytics, radiology, metal design, ecosystem homeostasis investigation, and many others.
This book provides information on data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart cities. This book aims to attract works on multidisciplinary research spanning across the computer science and engineering, environmental studies, services, urban planning and development, social sciences and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative solutions and big data-powered applications to cope with the real world challenges for building smart cities.
This book offers an introduction to modern natural language processing using machine learning, focusing on how neural networks create a machine interpretable representation of the meaning of natural language. Language is crucially linked to ideas - as Webster's 1923 "English Composition and Literature" puts it: "A sentence is a group of words expressing a complete thought". Thus the representation of sentences and the words that make them up is vital in advancing artificial intelligence and other "smart" systems currently being developed. Providing an overview of the research in the area, from Bengio et al.'s seminal work on a "Neural Probabilistic Language Model" in 2003, to the latest techniques, this book enables readers to gain an understanding of how the techniques are related and what is best for their purposes. As well as a introduction to neural networks in general and recurrent neural networks in particular, this book details the methods used for representing words, senses of words, and larger structures such as sentences or documents. The book highlights practical implementations and discusses many aspects that are often overlooked or misunderstood. The book includes thorough instruction on challenging areas such as hierarchical softmax and negative sampling, to ensure the reader fully and easily understands the details of how the algorithms function. Combining practical aspects with a more traditional review of the literature, it is directly applicable to a broad readership. It is an invaluable introduction for early graduate students working in natural language processing; a trustworthy guide for industry developers wishing to make use of recent innovations; and a sturdy bridge for researchers already familiar with linguistics or machine learning wishing to understand the other.
This book provides an overview of intelligent decision-making techniques and discusses their application in production and retail operations. Manufacturing and retail enterprises have stringent standards for using advanced and reliable techniques to improve decision-making processes, since these processes have significant effects on the performance of relevant operations and the entire supply chain. In recent years, researchers have been increasingly focusing attention on using intelligent techniques to solve various decision-making problems. The opening chapters provide an introduction to several commonly used intelligent techniques, such as genetic algorithm, harmony search, neural network and extreme learning machine. The book then explores the use of these techniques for handling various production and retail decision-making problems, such as production planning and scheduling, assembly line balancing, and sales forecasting.
This book addresses information technologies recently applied in the field of construction safety. Combining case studies, literature reviews and interviews to study the issue, it presents cutting-edge applications of various information technologies (ITs) in construction in different parts of the world, together with a wealth of figures, tables and examples. Though primarily intended for researchers and experts in the field, the book will also benefit graduate students.
This book provides readers with a timely and comprehensive yet concise view on the field of fuzzy logic and its real-world applications. The chapters, written by authoritative scholars in the field, report on promising new models for data analysis, decision making, and systems modeling, with a special emphasis on their applications in management science. The book is a token of appreciation from the fuzzy research community to Professor Christer Carlsson for his long time research and organizational commitment, which have among other things resulted in the foundation and success of the Institute for Advanced Management Systems Research (IAMSR) at Abo Akademi University, in Abo (Turku), Finland. The book serves as timely guide for the fuzzy logic and operations research communities alike.
This book presents a comprehensive and up-to-date treatise of a range of methodological and algorithmic issues. It also discusses implementations and case studies, identifies the best design practices, and assesses data analytics business models and practices in industry, health care, administration and business.Data science and big data go hand in hand and constitute a rapidly growing area of research and have attracted the attention of industry and business alike. The area itself has opened up promising new directions of fundamental and applied research and has led to interesting applications, especially those addressing the immediate need to deal with large repositories of data and building tangible, user-centric models of relationships in data. Data is the lifeblood of today's knowledge-driven economy.Numerous data science models are oriented towards end users and along with the regular requirements for accuracy (which are present in any modeling), come the requirements for ability to process huge and varying data sets as well as robustness, interpretability, and simplicity (transparency). Computational intelligence with its underlying methodologies and tools helps address data analytics needs.The book is of interest to those researchers and practitioners involved in data science, Internet engineering, computational intelligence, management, operations research, and knowledge-based systems.
This book gathers the proceedings of the Multidisciplinary International Conference of Research Applied to Defense and Security (MICRADS), held at the Military Engineering Institute, Rio de Janeiro, Brazil, from 8 to 10th May 2019. It covers a variety of topics in systems, communication and defense; strategy and political-administrative vision in defense; and engineering and technologies applied to defense. Given its scope, it offers a valuable resource for practitioners, researchers, and students alike.
This book reviews the state-of-the-art developments in nature-inspired algorithms and their applications in various disciplines, ranging from feature selection and engineering design optimization to scheduling and vehicle routing. It introduces each algorithm and its implementation with case studies as well as extensive literature reviews, and also includes self-contained chapters featuring theoretical analyses, such as convergence analysis and no-free-lunch theorems so as to provide insights into the current nature-inspired optimization algorithms. Topics include ant colony optimization, the bat algorithm, B-spline curve fitting, cuckoo search, feature selection, economic load dispatch, the firefly algorithm, the flower pollination algorithm, knapsack problem, octonian and quaternion representations, particle swarm optimization, scheduling, wireless networks, vehicle routing with time windows, and maximally different alternatives. This timely book serves as a practical guide and reference resource for students, researchers and professionals.
This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDA in IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy.
This book presents integrated optimization methods and algorithms for power system problems along with their codes in MATLAB. Providing a reliable and secure power and energy system is one of the main challenges of the new era. Due to the nonlinear multi-objective nature of these problems, the traditional methods are not suitable approaches for solving large-scale power system operation dilemmas. The integration of optimization algorithms into power systems has been discussed in several textbooks, but this is the first to include the integration methods and the developed codes. As such, it is a useful resource for undergraduate and graduate students, researchers and engineers trying to solve power and energy optimization problems using modern technical and intelligent systems based on theory and application case studies. It is expected that readers have a basic mathematical background.
This book discusses major technical advancements and research findings in the field of prognostic modelling in healthcare image and data analysis. The use of prognostic modelling as predictive models to solve complex problems of data mining and analysis in health care is the feature of this book. The book examines the recent technologies and studies that reached the practical level and becoming available in preclinical and clinical practices in computational intelligence. The main areas of interest covered in this book are highest quality, original work that contributes to the basic science of processing, analysing and utilizing all aspects of advanced computational prognostic modelling in healthcare image and data analysis.
Decision has inspired reflection of many thinkers since the ancient times. With the rapid development of science and society, appropriate dynamic decision making has been playing an increasingly important role in many areas of human activity including engineering, management, economy and others. In most real-world problems, decision makers usually have to make decisions sequentially at different points in time and space, at different levels for a component or a system, while facing multiple and conflicting objectives and a hybrid uncertain environment where fuzziness and randomness co-exist in a decision making process. This leads to the development of fuzzy-like multiple objective multistage decision making. This book provides a thorough understanding of the concepts of dynamic optimization from a modern perspective and presents the state-of-the-art methodology for modeling, analyzing and solving the most typical multiple objective multistage decision making practical application problems under fuzzy-like uncertainty, including the dynamic machine allocation, closed multiclass queueing networks optimization, inventory management, facilities planning and transportation assignment. A number of real-world engineering case studies are used to illustrate in detail the methodology. With its emphasis on problem-solving and applications, this book is ideal for researchers, practitioners, engineers, graduate students and upper-level undergraduates in applied mathematics, management science, operations research, information system, civil engineering, building construction and transportation optimization
This book presents selected peer-reviewed papers from the International Conference on Mechanical and Energy Technologies, which was held on 7-8 November 2019 at Galgotias College of Engineering and Technology, Greater Noida, India. The book reports on the latest developments in the field of mechanical and energy technology in contributions prepared by experts from academia and industry. The broad range of topics covered includes aerodynamics and fluid mechanics, artificial intelligence, nonmaterial and nonmanufacturing technologies, rapid manufacturing technologies and prototyping, remanufacturing, renewable energies technologies, metrology and computer-aided inspection, etc. Accordingly, the book offers a valuable resource for researchers in various fields, especially mechanical and industrial engineering, and energy technologies.
This book offers an essential guide to IoT Security, Smart Cities, IoT Applications, etc. In addition, it presents a structured introduction to the subject of destination marketing and an exhaustive review on the challenges of information security in smart and intelligent applications, especially for IoT and big data contexts. Highlighting the latest research on security in smart cities, it addresses essential models, applications, and challenges. Written in plain and straightforward language, the book offers a self-contained resource for readers with no prior background in the field. Primarily intended for students in Information Security and IoT applications (including smart cities systems and data heterogeneity), it will also greatly benefit academic researchers, IT professionals, policymakers and legislators. It is well suited as a reference book for both undergraduate and graduate courses on information security approaches, the Internet of Things, and real-world intelligent applications.
This book covers the most recent advances in the field of evolutionary multiobjective optimization. With the aim of drawing the attention of up-and coming scientists towards exciting prospects at the forefront of computational intelligence, the authors have made an effort to ensure that the ideas conveyed herein are accessible to the widest audience. The book begins with a summary of the basic concepts in multi-objective optimization. This is followed by brief discussions on various algorithms that have been proposed over the years for solving such problems, ranging from classical (mathematical) approaches to sophisticated evolutionary ones that are capable of seamlessly tackling practical challenges such as non-convexity, multi-modality, the presence of multiple constraints, etc. Thereafter, some of the key emerging aspects that are likely to shape future research directions in the field are presented. These include: optimization in dynamic environments, multi-objective bilevel programming, handling high dimensionality under many objectives, and evolutionary multitasking. In addition to theory and methodology, this book describes several real-world applications from various domains, which will expose the readers to the versatility of evolutionary multi-objective optimization. |
![]() ![]() You may like...
Advanced Methodologies and Technologies…
D.B.A., Mehdi Khosrow-Pour,
Hardcover
R9,006
Discovery Miles 90 060
Web Services - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R9,718
Discovery Miles 97 180
News Search, Blogs and Feeds - A Toolkit
Lars Vage, Lars Iselid
Paperback
R1,412
Discovery Miles 14 120
Social Web Evolution - Integrating…
Miltiadis D Lytras, Patricia Ordonez De Pablos
Hardcover
R5,351
Discovery Miles 53 510
Building Java Programs: A Back to Basics…
Stuart Reges, Marty Stepp
Paperback
R2,421
Discovery Miles 24 210
An Introduction to XML and Web…
Anders Moller, Michael Schwartzbach
Paperback
R2,721
Discovery Miles 27 210
|