Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence
This book delivers concise coverage of classical methods and new developments related to indoor location-based services. It collects results from isolated domains including geometry, artificial intelligence, statistics, cooperative algorithms, and distributed systems and thus provides an accessible overview of fundamental methods and technologies. This makes it an ideal starting point for researchers, students, and professionals in pervasive computing. Location-based services are services using the location of a mobile computing device as their primary input. While such services are fairly easy to implement outside buildings thanks to accessible global positioning systems and high-quality environmental information, the situation inside buildings is fundamentally different. In general, there is no simple way of determining the position of a moving target inside a building without an additional dedicated infrastructure. The book's structure is learning oriented, starting with a short introduction to wireless communication systems and basic positioning techniques and ending with advanced features like event detection, simultaneous localization and mapping, and privacy aspects. Readers who are not familiar with the individual topics will be able to work through the book from start to finish. At the same time all chapters are self-contained to support readers who are already familiar with some of the content and only want to pick selected topics that are of particular interest.
This book is devoted to embedded systems (ESs), which can now be found in practically all fields of human activity. Embedded systems are essentially a special class of computing systems designed for monitoring and controlling objects of the physical world. The book begins by discussing the distinctive features of ESs, above all their cybernetic-physical character, and how they can be designed to deliver the required performance with a minimum amount of hardware. In turn, it presents a range of design methodologies. Considerable attention is paid to the hardware implementation of computational algorithms. It is shown that different parts of complex ESs could be implemented using models of finite state machines (FSMs). Also, field-programmable gate arrays (FPGAs) are very often used to implement different hardware accelerators in ESs. The book pays considerable attention to design methods for FPGA-based FSMs, before the closing section turns to programmable logic controllers widely used in industry. This book will be interesting and useful for students and postgraduates in the area of Computer Science, as well as for designers of embedded systems. In addition, it offers a good point of departure for creating embedded systems for various spheres of human activity.
This volume includes papers presented at the 4th International Conference on Sustainable Design and Manufacturing (SDM-17) held in Bologna, Italy, in April 2017. The conference covered a wide range of topics from cutting-edge sustainable product design and service innovation, sustainable processes and technology for the manufacturing of sustainable products, sustainable manufacturing systems and enterprises, decision support for sustainability, and the study of the societal impact of sustainability including research for circular economy. Application areas are wide and varied, and the book provides an excellent overview of the latest research and development in the area of Sustainable Design and Manufacturing.
This book presents novel classification algorithms for four challenging prediction tasks, namely learning from imbalanced, semi-supervised, multi-instance and multi-label data. The methods are based on fuzzy rough set theory, a mathematical framework used to model uncertainty in data. The book makes two main contributions: helping readers gain a deeper understanding of the underlying mathematical theory; and developing new, intuitive and well-performing classification approaches. The authors bridge the gap between the theoretical proposals of the mathematical model and important challenges in machine learning. The intended readership of this book includes anyone interested in learning more about fuzzy rough set theory and how to use it in practical machine learning contexts. Although the core audience chiefly consists of mathematicians, computer scientists and engineers, the content will also be interesting and accessible to students and professionals from a range of other fields.
This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.
This book addresses various aspects of how smart healthcare can be used to detect and analyze diseases, the underlying methodologies, and related security concerns. Healthcare is a multidisciplinary field that involves a range of factors like the financial system, social factors, health technologies, and organizational structures that affect the healthcare provided to individuals, families, institutions, organizations, and populations. The goals of healthcare services include patient safety, timeliness, effectiveness, efficiency, and equity. Smart healthcare consists of m-health, e-health, electronic resource management, smart and intelligent home services, and medical devices. The Internet of Things (IoT) is a system comprising real-world things that interact and communicate with each other via networking technologies. The wide range of potential applications of IoT includes healthcare services. IoT-enabled healthcare technologies are suitable for remote health monitoring, including rehabilitation, assisted ambient living, etc. In turn, healthcare analytics can be applied to the data gathered from different areas to improve healthcare at minimum expense.
This book is a remarkable collection of chapters covering a wider range of topics, including unsupervised text mining, anomaly and Intrusion Detection, Self-reconfiguring Robotics, application of Fuzzy Logic to development aid, Design and Optimization, Context-Aware Reasoning, DNA Sequence Assembly and Multilayer Perceptron Networks. The twenty-one chapters present extended results from the SAI Intelligent Systems Conference (IntelliSys) 2015 and have been selected based on high recommendations during IntelliSys 2015 review process. This book presents innovative research and development carried out presently in fields of knowledge representation and reasoning, machine learning, and particularly in intelligent systems in a more broad sense. It provides state - of - the - art intelligent methods and techniques for solving real world problems along with a vision of the future research.
This book discusses major technical advancements and research findings in the field of prognostic modelling in healthcare image and data analysis. The use of prognostic modelling as predictive models to solve complex problems of data mining and analysis in health care is the feature of this book. The book examines the recent technologies and studies that reached the practical level and becoming available in preclinical and clinical practices in computational intelligence. The main areas of interest covered in this book are highest quality, original work that contributes to the basic science of processing, analysing and utilizing all aspects of advanced computational prognostic modelling in healthcare image and data analysis.
This book covers the fundamental principles, new theories and methodologies, and potential applications of hybrid intelligent networks. Chapters focus on hybrid neural networks and networked multi-agent networks, including their communication, control and optimization synthesis. This text also provides a succinct but useful guideline for designing neural network-based hybrid artificial intelligence for brain-inspired computation systems and applications in the Internet of Things. Artificial Intelligence has developed into a deep research field targeting robots with more brain-inspired perception, learning, decision-making abilities, etc. This text devoted to a tutorial on hybrid intelligent networks that have been identified in nature and engineering, especially in the brain, modeled by hybrid dynamical systems and complex networks, and have shown potential application to brain-inspired intelligence. Included in this text are impulsive neural networks, neurodynamics, multiagent networks, hybrid dynamics analysis, collective dynamics, as well as hybrid communication, control and optimization methods. Graduate students who are interested in artificial intelligence and hybrid intelligence, as well as professors and graduate students who are interested in neural networks and multiagent networks will find this textbook a valuable resource. AI engineers and consultants who are working in wireless communications and networking will want to buy this book. Also, professional and academic institutions in universities and Mobile vehicle companies and engineers and managers who concern humans in the loop of IoT will also be interested in this book.
This monograph offers a cross-system exchange and cross-modality investigation into brain-heart interplay. Brain-Heart Interplay (BHI) is a highly interdisciplinary scientific topic, which spreads from the physiology of the Central/Autonomous Nervous Systems, especially Central Autonomic Network, to advanced signal processing and modeling for its activity quantification. Motivated by clinical evidence and supported by recent findings in neurophysiology, this monograph first explores the definition of basic Brain-Heart Interplay quantifiers, and then moves onto advanced methods for the assessment of health and disease states. Non-invasive use of brain monitoring techniques, including electroencephalogram and function Magnetic Resonance Imaging, will be described together with heartbeat dynamics monitoring through pulseoximeter and ECG signals. The audience of this book comprises especially of biomedical engineers and medical doctors with expertise in statistics and/or signal processing. Researchers in the fields of cardiology, neurology, psychiatry, and neuroscience in general may be interested as well.
This unique book introduces a variety of techniques designed to represent, enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. Providing a unique compendium of current and emerging machine learning paradigms for healthcare informatics, it reflects the diversity, complexity, and the depth and breadth of this multi-disciplinary area. Further, it describes techniques for applying machine learning within organizations and explains how to evaluate the efficacy, suitability, and efficiency of such applications. Featuring illustrative case studies, including how chronic disease is being redefined through patient-led data learning, the book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare challenges.
Tackle a variety of tasks in natural language processing by learning how to use the R language and tidy data principles. This practical guide provides examples and resources to help you get up to speed with dplyr, broom, ggplot2, and other tidy tools from the R ecosystem. You'll discover how tidy data principles can make text mining easier, more effective, and consistent by employing tools already in wide use. Text Mining with R shows you how to manipulate, summarize, and visualize the characteristics of text, sentiment analysis, tf-idf, and topic modeling. Along with tidy data methods, you'll also examine several beginning-to-end tidy text analyses on data sources from Twitter to NASA datasets. These analyses bring together multiple text mining approaches covered in the book. Get real-world examples for implementing text mining using tidy R package Understand natural language processing concepts like sentiment analysis, tf-idf, and topic modeling Learn how to analyze unstructured, text-heavy data using R language and ecosystem
This carefully edited volume is the outcome of the eleventh edition of the Workshop on Algorithmic Foundations of Robotics (WAFR), which is the premier venue showcasing cutting edge research in algorithmic robotics. The eleventh WAFR, which was held August 3-5, 2014 at Bogazici University in Istanbul, Turkey continued this tradition. This volume contains extended versions of the 42 papers presented at WAFR. These contributions highlight the cutting edge research in classical robotics problems (e.g. manipulation, motion, path, multi-robot and kinodynamic planning), geometric and topological computation in robotics as well novel applications such as informative path planning, active sensing and surgical planning. This book - rich by topics and authoritative contributors - is a unique reference on the current developments and new directions in the field of algorithmic foundations.
The universe is a massive system of systems - for example, ecological systems, social systems, commodity and stock markets. These systems are complex, constantly adapting to their environment, and many are essential to the very existence of human beings. To fully understand these systems, complex adaptive systems research uses systemic inquiry to build multi-level and multidisciplinary representations of reality to study these systems.""Applications of Complex Adaptive Systems"" provides a global view of the most up-to-date research on the strategies, applications, practice, and implications of complex adaptive systems, to better understand the various critical systems that surround human life. Researchers working in the field of complex adaptive systems and related fields such as machine learning and artificial intelligence, multi-agent systems, and data mining, as well as professionals in related applications such as defense, bioinformatics, and sociology will find this book an indispensable, state-of-the-art reference.
This book addresses the difficult task of integrating computational techniques with virtual reality and healthcare. It discusses the use of virtual reality in various areas, such as healthcare, cognitive and behavioural training, understanding mathematical graphs, human-computer interaction, fluid dynamics in healthcare industries, accurate real-time simulation, and healthcare diagnostics. Presenting the computational techniques for virtual reality in healthcare, it is a valuable reference resource for professionals at educational institutes as well as researchers, scientists, engineers and practitioners in industry.
This book presents a comprehensive overview of the recent advances in the domain of optimal guidance, exploring the characteristics of various optimal guidance algorithms and their pros and cons. Optimal guidance is based on the concept of trajectory optimization, which minimizes the meaningful performance index while satisfying certain terminal constraints, and by properly designing the cost function the guidance command can serve as a desired pattern for a variety of mission objectives. The book allows readers to gain a deeper understanding of how optimal guidance law can be utilized to achieve different mission objectives for missiles and UAVs, and also explores the physical meaning and working principle of different new optimal guidance laws. In practice, this information is important in ensuring confidence in the performance and reliability of the guidance law when implementing it in a real-world system, especially in aerospace engineering where reliability is the first priority.
The first book of its kind devoted to this topic, this comprehensive text/reference presents state-of-the-art research and reviews current challenges in the application of computer vision to problems in sports. Opening with a detailed introduction to the use of computer vision across the entire life-cycle of a sports event, the text then progresses to examine cutting-edge techniques for tracking the ball, obtaining the whereabouts and pose of the players, and identifying the sport being played from video footage. The work concludes by investigating a selection of systems for the automatic analysis and classification of sports play. The insights provided by this pioneering collection will be of great interest to researchers and practitioners involved in computer vision, sports analysis and media production.
This book will provide a comprehensive overview of business analytics, for those who have either a technical background (quantitative methods) or a practitioner business background. Business analytics, in the context of the 4th Industrial Revolution, is the "new normal" for businesses that operate in this digital age. This book provides a comprehensive primer and overview of the field (and related fields such as Business Intelligence and Data Science). It will discuss the field as it applies to financial institutions, with some minor departures to other industries. Readers will gain understanding and insight into the field of data science, including traditional as well as emerging techniques. Further, many chapters are dedicated to the establishment of a data-driven team - from executive buy-in and corporate governance to managing and quantifying the return of data-driven projects.
This edited volume is devoted to Big Data Analysis from a Machine Learning standpoint as presented by some of the most eminent researchers in this area. It demonstrates that Big Data Analysis opens up new research problems which were either never considered before, or were only considered within a limited range. In addition to providing methodological discussions on the principles of mining Big Data and the difference between traditional statistical data analysis and newer computing frameworks, this book presents recently developed algorithms affecting such areas as business, financial forecasting, human mobility, the Internet of Things, information networks, bioinformatics, medical systems and life science. It explores, through a number of specific examples, how the study of Big Data Analysis has evolved and how it has started and will most likely continue to affect society. While the benefits brought upon by Big Data Analysis are underlined, the book also discusses some of the warnings that have been issued concerning the potential dangers of Big Data Analysis along with its pitfalls and challenges.
As a movement, transhumanism aims to upgrade the human body through science, constantly pushing back the limits of a person by using cutting-edge technologies to fix the human body and upgrade it beyond its natural abilities. Transhumanism can not only change human habits, but it can also change learning practices. By improving human learning, it improves the human organism beyond natural and biological limits. The Handbook of Research on Learning in the Age of Transhumanism is an essential research publication that discusses global values, norms, and ethics that relate to the diverse needs of learners in the digital world and addresses future priorities and needs for transhumanism. The book will identify and scrutinize the needs of learners in the age of transhumanism and examine best practices for transhumanist leaders in learning. Featuring topics such as cybernetics, pedagogy, and sociology, this book is ideal for educators, trainers, instructional designers, curriculum developers, professionals, researchers, academicians, policymakers, and librarians.
This book presents works from world-class experts from academia, industry, and national agencies representing countries from across the world focused on automotive fields for in-vehicle signal processing and safety. These include cutting-edge studies on safety, driver behavior, infrastructure, and human-to-vehicle interfaces. Vehicle Systems, Driver Modeling and Safety is appropriate for researchers, engineers, and professionals working in signal processing for vehicle systems, next generation system design from driver-assisted through fully autonomous vehicles.
This book examines the principles of and advances in personalized task recommendation in crowdsourcing systems, with the aim of improving their overall efficiency. It discusses the challenges faced by personalized task recommendation when crowdsourcing systems channel human workforces, knowledge, skills and perspectives beyond traditional organizational boundaries. The solutions presented help interested individuals find tasks that closely match their personal interests and capabilities in a context of ever-increasing opportunities of participating in crowdsourcing activities. In order to explore the design of mechanisms that generate task recommendations based on individual preferences, the book first lays out a conceptual framework that guides the analysis and design of crowdsourcing systems. Based on a comprehensive review of existing research, it then develops and evaluates a new kind of task recommendation service that integrates with existing systems. The resulting prototype provides a platform for both the field study and the practical implementation of task recommendation in productive environments.
This monograph bridges the gap between the nonlinear predictor as a concept and as a practical tool, presenting a complete theory of the application of predictor feedback to time-invariant, uncertain systems with constant input delays and/or measurement delays. It supplies several methods for generating the necessary real-time solutions to the systems' nonlinear differential equations, which the authors refer to as approximate predictors. Predictor feedback for linear time-invariant (LTI) systems is presented in Part I to provide a solid foundation on the necessary concepts, as LTI systems pose fewer technical difficulties than nonlinear systems. Part II extends all of the concepts to nonlinear time-invariant systems. Finally, Part III explores extensions of predictor feedback to systems described by integral delay equations and to discrete-time systems. The book's core is the design of control and observer algorithms with which global stabilization, guaranteed in the previous literature with idealized (but non-implementable) predictors, is preserved with approximate predictors developed in the book. An applications-driven engineer will find a large number of explicit formulae, which are given throughout the book to assist in the application of the theory to a variety of control problems. A mathematician will find sophisticated new proof techniques, which are developed for the purpose of providing global stability guarantees for the nonlinear infinite-dimensional delay system under feedback laws employing practically implementable approximate predictors. Researchers working on global stabilization problems for time-delay systems will find this monograph to be a helpful summary of the state of the art, while graduate students in the broad field of systems and control will advance their skills in nonlinear control design and the analysis of nonlinear delay systems.
Traditional machining has many limitations in today's technology-driven world, which has caused industrial professionals to begin implementing various optimization techniques within their machining processes. The application of methods including machine learning and genetic algorithms has recently transformed the manufacturing industry and created countless opportunities in non-traditional machining methods. Significant research in this area, however, is still considerably lacking. Machine Learning Applications in Non-Conventional Machining Processes is a collection of innovative research on the advancement of intelligent technology in industrial environments and its applications within the manufacturing field. While highlighting topics including evolutionary algorithms, micro-machining, and artificial neural networks, this book is ideally designed for researchers, academicians, engineers, managers, developers, practitioners, industrialists, and students seeking current research on intelligence-based machining processes in today's technology-driven market.
This book discusses the unique nature and complexity of fog data analytics (FDA) and develops a comprehensive taxonomy abstracted into a process model. The exponential increase in sensors and smart gadgets (collectively referred as smart devices or Internet of things (IoT) devices) has generated significant amount of heterogeneous and multimodal data, known as big data. To deal with this big data, we require efficient and effective solutions, such as data mining, data analytics and reduction to be deployed at the edge of fog devices on a cloud. Current research and development efforts generally focus on big data analytics and overlook the difficulty of facilitating fog data analytics (FDA). This book presents a model that addresses various research challenges, such as accessibility, scalability, fog nodes communication, nodal collaboration, heterogeneity, reliability, and quality of service (QoS) requirements, and includes case studies demonstrating its implementation. Focusing on FDA in IoT and requirements related to Industry 4.0, it also covers all aspects required to manage the complexity of FDA for IoT applications and also develops a comprehensive taxonomy. |
You may like...
Competition and Regulation in the Data…
Gintare Surblyte-Namaviciene
Hardcover
R3,019
Discovery Miles 30 190
Advanced Introduction to Artificial…
Tom Davenport, John Glaser, …
Paperback
R573
Discovery Miles 5 730
Research Handbook on the Law of…
Woodrow Barfield, Ugo Pagallo
Paperback
R1,471
Discovery Miles 14 710
Advanced Introduction to Law and…
Woodrow Barfield, Ugo Pagallo
Paperback
R639
Discovery Miles 6 390
|