Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence
This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in n whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in n, and the effect of communication delays in an MAS evolving under consensus algorithms or homogeneous maps are also explored. Featuring appendices which introduce the requisite concepts from continuum kinematics and graph theory, this monograph will provide advanced graduate students and researchers with the necessary background to understand and apply the methods presented.
This proceeding features papers discussing big data innovation for sustainable cognitive computing. The papers feature detail on cognitive computing and its self-learning systems that use data mining, pattern recognition and natural language processing (NLP) to mirror the way the human brain works. This international conference focuses on cognitive computing technologies, from knowledge representation techniques and natural language processing algorithms to dynamic learning approaches. Topics covered include Data Science for Cognitive Analysis, Real-Time Ubiquitous Data Science, Platform for Privacy Preserving Data Science, and Internet-Based Cognitive Platform. The EAI International Conference on Big Data Innovation for Sustainable Cognitive Computing (BDCC 2018), took place on 13 - 15 December 2018 in Coimbatore, India.
This book explores the ways in which the broad range of technologies that make up the smart city infrastructure can be harnessed to incorporate more playfulness into the day-to-day activities that take place within smart cities, making them not only more efficient but also more enjoyable for the people who live and work within their confines. The book addresses various topics that will be of interest to playable cities stakeholders, including the human-computer interaction and game designer communities, computer scientists researching sensor and actuator technology in public spaces, urban designers, and (hopefully) urban policymakers. This is a follow-up to another book on Playable Cities edited by Anton Nijholt and published in 2017 in the same book series, Gaming Media and Social Effects.
This book provides a detailed analysis of the economic and political implications of the introduction of Artificial Intelligence and Robotics into the service sector of economies that have so far relied on service jobs to sustain levels of employment. It examines how reliance on coercive measures for enforcing low-paid service work attempts to postpone this third Industrial Revolution, and analyses the struggles that must still take place if we are to achieve a future of freedom and social justice for all. While automation and globalisation have made human solidarities of traditional kinds more difficult to sustain, they have also made new kinds possible. Experiments in social policy, and especially the pilot projects with unconditional Universal Basic Incomes, offer a possible model for a new kind of society. The author argues that it is politics which will determine whether we can achieve these new human solidarities.
Robust and Fault-Tolerant Control proposes novel automatic control strategies for nonlinear systems developed by means of artificial neural networks and pays special attention to robust and fault-tolerant approaches. The book discusses robustness and fault tolerance in the context of model predictive control, fault accommodation and reconfiguration, and iterative learning control strategies. Expanding on its theoretical deliberations the monograph includes many case studies demonstrating how the proposed approaches work in practice. The most important features of the book include: a comprehensive review of neural network architectures with possible applications in system modelling and control; a concise introduction to robust and fault-tolerant control; step-by-step presentation of the control approaches proposed; an abundance of case studies illustrating the important steps in designing robust and fault-tolerant control; and a large number of figures and tables facilitating the performance analysis of the control approaches described. The material presented in this book will be useful for researchers and engineers who wish to avoid spending excessive time in searching neural-network-based control solutions. It is written for electrical, computer science and automatic control engineers interested in control theory and their applications. This monograph will also interest postgraduate students engaged in self-study of nonlinear robust and fault-tolerant control.
This book addresses a range of solutions and effective control techniques for Microbial Fuel Cells (MFCs), intended as a response to the increased energy consumption and wastewater production stemming from globalization. It describes the fundamentals of MFCs and control-oriented mathematical models, and provides detailed information on uncertain parameters. Various control techniques like robust control with LMI, adaptive backstepping control, and exact linearization control are developed for different mathematical models. In turn, the book elaborates on the basics of adaptive control, presenting several methods in detail. It also demonstrates how MFCs can be developed at the laboratory level, equipping readers to develop their own MFCs for experimental purposes. In closing, it develops a transfer function model for MFCs by combining a system identification technique and model reference adaptive control techniques. By addressing one of the most promising sources of clean and renewable energy, this book provides a viable solution for meeting the world's increasing energy demands.
This book gathers 12 of the most promising papers presented at the 15th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications (SERA 2017) held on June 7-9, 2017 at the University of Greenwich, London, UK. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science, to share their experiences and to exchange new ideas and information in a meaningful way. The book also presents research findings regarding all aspects (theory, applications and tools) of computer and information science, and discusses the practical challenges encountered along the way and the solutions adopted to solve them.
This book offers a timely snapshot of current soft-computing research and solutions to decision-making and optimization problems, which are ubiquitous in the current social and technological context, addressing fields including logistics, transportation and data analysis. Written by leading international experts from the United States, Brazil and Cuba, as well as the United Kingdom, France, Finland and Spain, it discusses theoretical developments in and practical applications of soft computing in fields where these methods are crucial to obtaining better models, including: intelligent transportation systems, maritime logistics, portfolio selection, decision- making, fuzzy cognitive maps, and fault detection. The book is dedicated to Professor Jose L. Verdegay, a pioneer who has been actively pursuing research in fuzzy sets theory and soft computing since 1982, in honor of his 65th birthday.
This handbook provides comprehensive knowledge and includes an overview of the current state-of-the-art of Big Data Privacy, with chapters written by international world leaders from academia and industry working in this field. The first part of this book offers a review of security challenges in critical infrastructure and offers methods that utilize acritical intelligence (AI) techniques to overcome those issues. It then focuses on big data security and privacy issues in relation to developments in the Industry 4.0. Internet of Things (IoT) devices are becoming a major source of security and privacy concern in big data platforms. Multiple solutions that leverage machine learning for addressing security and privacy issues in IoT environments are also discussed this handbook. The second part of this handbook is focused on privacy and security issues in different layers of big data systems. It discusses about methods for evaluating security and privacy of big data systems on network, application and physical layers. This handbook elaborates on existing methods to use data analytic and AI techniques at different layers of big data platforms to identify privacy and security attacks. The final part of this handbook is focused on analyzing cyber threats applicable to the big data environments. It offers an in-depth review of attacks applicable to big data platforms in smart grids, smart farming, FinTech, and health sectors. Multiple solutions are presented to detect, prevent and analyze cyber-attacks and assess the impact of malicious payloads to those environments. This handbook provides information for security and privacy experts in most areas of big data including; FinTech, Industry 4.0, Internet of Things, Smart Grids, Smart Farming and more. Experts working in big data, privacy, security, forensics, malware analysis, machine learning and data analysts will find this handbook useful as a reference. Researchers and advanced-level computer science students focused on computer systems, Internet of Things, Smart Grid, Smart Farming, Industry 4.0 and network analysts will also find this handbook useful as a reference.
Medical imaging is an indispensable tool for modern healthcare. Machine leaning plays an essential role in the medical imaging field, with applications including medical image analysis, computer-aided diagnosis, organ/lesion segmentation, image fusion, image-guided therapy, and image annotation and image retrieval. Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis provides a comprehensive overview of machine learning research and technology in medical decision-making based on medical images. This book covers major technical advancements and research findings in the field of Computer-Aided Diagnosis (CAD). As it demonstrates the practical applications of CAD, this book is a useful reference for professors in engineering and medical schools, students in engineering and applied-science, medical students, medical engineers, researchers in industry, academia, and health science, radiologists, cardiologists, surgeons, and healthcare professionals.
This easy-to-understand book discusses applications of current technologies and the foundations for their extension into emerging areas in the future. It includes research presented at two conferences: 5th International IBM Cloud Academy Conference, 2017, held in Wroclaw, Poland. 5th Asia-Pacific Conference on Computer Assisted and System Engineering, 2017, held in Guilin, China. These conferences focused on system and application engineering, including achievements in the interdisciplinary topics of cloud computing, big data, IoT and mobile communications. Featuring 19 chapters, the book has the potential to influence current and future research and applications combining the best attributes of computing, mathematics, artificial intelligence, biometrics and software engineering to create a comprehensive research application domain.
The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H bb) signal measurement. The cross sections for the VH production times the H bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
This book is inspired by the contemporary fascination with virtual reality and growing presence of this type of technology in everyday life. It explores the ways in which virtual reality evokes illusory transformation responses. The power of virtual reality is in making the mediation by technology in these experiences appear irrelevant to cognitive processes, so much so that it is often assumed that skills acquired in virtual environments are generally transferable to the physical world. However, cognition is affected by virtual reality technology, which is reflected in issues related to virtual embodiment, choice of spatial strategies, differences in neural and electrophysiological patterns associated with movement processing when navigating virtual vs. physical environments, and, at least to some extent, in virtual proxemics. In addition to spatial cognition, the book explores the sense of self in virtual reality, social interaction and virtual togetherness, action and motor cognition, calling to mind debates from philosophy, psychology, and cognitive neuroscience.
This book contains the proceedings of the KES International conferences on Innovation in Medicine and Healthcare (KES-InMed-19) and Intelligent Interactive Multimedia Systems and Services (KES-IIMSS-19), held on 17-19 June 2019 and co-located in St. Julians, on the island of Malta, as part of the KES Smart Digital Futures 2019 multi-theme conference. The major areas covered by KES-InMed-19 include: Digital IT Architecture in Healthcare; Advanced ICT for Medical and Healthcare; Biomedical Engineering, Trends, Research and Technologies and Healthcare Support System. The major areas covered by KES-IIMSS-19 were: Interactive Technologies; Artificial Intelligence and Data Analytics; Intelligent Services and Architectures and Applications. This book is of use to researchers in these vibrant areas, managers, industrialists and anyone wishing to gain an overview of the latest research in these fields.
This volume presents the first part of the proceedings of the Mediterranean Conference on Information & Communication Technologies (MedICT 2015), which was held at Saidia, Morocco during 7-9 May, 2015. MedICT provides an excellent international forum to the researchers and practitioners from both academia as well as industry to meet and share cutting-edge development. The conference has also a special focus on enabling technologies for societal challenges, and seeks to address multidisciplinary challenges in Information & Communication Technologies such as health, demographic change, wellbeing, security and sustainability issues. The proceedings publish high quality papers which are closely related to the various theories, as well as emerging and practical applications of particular interest to the ICT community. This first volume provides a compact yet broad view of recent developments in devices, technologies and processing, and covers recent research areas in the field including Microwave Devices and Printed Antennas, Advances in Optical and RF Devices and Applications, Signal Processing and Information Theory, Wireless and Optical Technologies and Techniques, Computer Vision, Optimization and Modeling in Wireless Communication Systems, Modeling, Identification and Biomedical Signal Processing, Photovoltaic Cell & Systems, RF Devices and Antennas for Wireless Applications, RFID, Ad Hoc and Networks Issues.
The topic of this monograph falls within the, so-called, biologically motivated computing paradigm, in which biology provides the source of models and inspiration towards the development of computational intelligence and machine learning systems. Specifically, artificial immune systems are presented as a valid metaphor towards the creation of abstract and high level representations of biological components or functions that lay the foundations for an alternative machine learning paradigm. Therefore, focus is given on addressing the primary problems of Pattern Recognition by developing Artificial Immune System-based machine learning algorithms for the problems of Clustering, Classification and One-Class Classification. Pattern Classification, in particular, is studied within the context of the Class Imbalance Problem. The main source of inspiration stems from the fact that the Adaptive Immune System constitutes one of the most sophisticated biological systems that is exceptionally evolved in order to continuously address an extremely unbalanced pattern classification problem, namely, the self / non-self discrimination process. The experimental results presented in this monograph involve a wide range of degenerate binary classification problems where the minority class of interest is to be recognized against the vast volume of the majority class of negative patterns. In this context, Artificial Immune Systems are utilized for the development of personalized software as the core mechanism behind the implementation of Recommender Systems. The book will be useful to researchers, practitioners and graduate students dealing with Pattern Recognition and Machine Learning and their applications in Personalized Software and Recommender Systems. It is intended for both the expert/researcher in these fields, as well as for the general reader in the field of Computational Intelligence and, more generally, Computer Science who wishes to learn more about the field of Intelligent Computing Systems and its applications. An extensive list of bibliographic references at the end of each chapter guides the reader to probe further into application area of interest to him/her.
This book presents advances and innovations in grouping genetic algorithms, enriched with new and unique heuristic optimization techniques. These algorithms are specially designed for solving industrial grouping problems where system entities are to be partitioned or clustered into efficient groups according to a set of guiding decision criteria. Examples of such problems are: vehicle routing problems, team formation problems, timetabling problems, assembly line balancing, group maintenance planning, modular design, and task assignment. A wide range of industrial grouping problems, drawn from diverse fields such as logistics, supply chain management, project management, manufacturing systems, engineering design and healthcare, are presented. Typical complex industrial grouping problems, with multiple decision criteria and constraints, are clearly described using illustrative diagrams and formulations. The problems are mapped into a common group structure that can conveniently be used as an input scheme to specific variants of grouping genetic algorithms. Unique heuristic grouping techniques are developed to handle grouping problems efficiently and effectively. Illustrative examples and computational results are presented in tables and graphs to demonstrate the efficiency and effectiveness of the algorithms. Researchers, decision analysts, software developers, and graduate students from various disciplines will find this in-depth reader-friendly exposition of advances and applications of grouping genetic algorithms an interesting, informative and valuable resource.
Fuzzy Modeling and Genetic Algorithms for Data Mining and
Exploration is a handbook for analysts, engineers, and managers
involved in developing data mining models in business and
government. As you'll discover, fuzzy systems are extraordinarily
valuable tools for representing and manipulating all kinds of data,
and genetic algorithms and evolutionary programming techniques
drawn from biology provide the most effective means for designing
and tuning these systems.
This book presents a cutting-edge research procedure in the Nature-Inspired Computing (NIC) domain and its connections with computational intelligence areas in real-world engineering applications. It introduces readers to a broad range of algorithms, such as genetic algorithms, particle swarm optimization, the firefly algorithm, flower pollination algorithm, collision-based optimization algorithm, bat algorithm, ant colony optimization, and multi-agent systems. In turn, it provides an overview of meta-heuristic algorithms, comparing the advantages and disadvantages of each. Moreover, the book provides a brief outline of the integration of nature-inspired computing techniques and various computational intelligence paradigms, and highlights nature-inspired computing techniques in a range of applications, including: evolutionary robotics, sports training planning, assessment of water distribution systems, flood simulation and forecasting, traffic control, gene expression analysis, antenna array design, and scheduling/dynamic resource management.
This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization of stabilizing controllers, is demonstrated. The nonlinear H-infinity optimal control problem is also treated and the book concludes with a geometric analysis of the solution sets of Hamilton-Jacobi inequalities and their relation with Riccati inequalities for the linearization. * L2-Gain and Passivity Techniques in Nonlinear Control (third edition) is thoroughly updated, revised, reorganized and expanded. Among the changes, readers will find: * updated and extended coverage of dissipative systems theory * substantial new material regarding converse passivity theorems and incremental/shifted passivity * coverage of recent developments on networks of passive systems with examples * a completely overhauled and succinct introduction to modeling and control of port-Hamiltonian systems, followed by an exposition of port-Hamiltonian formulation of physical network dynamics * updated treatment of all-pass factorization of nonlinear systems The book provides graduate students and researchers in systems and control with a compact presentation of a fundamental and rapidly developing area of nonlinear control theory, illustrated by a broad range of relevant examples stemming from different application areas.
This book provides a comprehensive review of industry 4.0 and its applications, discussing the history of industry evaluation, including industry 1.0, 2.0, 3.0 and 4.0, and the future structure of industry evaluation. It also examines the effects and impact of various technologies in industry and presents new interdisciplinary business models based on advanced technologies with the help of use cases. Lastly, it highlights the benefits of technological implementation in industry using examples of real-world applications, providing a robust and reliable technological conceptual framework and roadmap for decision-makers in all areas of industry involved transformation.
This book offers a compendium of best practices in game dynamics. It covers a wide range of dynamic game elements ranging from player behavior over artificial intelligence to procedural content generation. Such dynamics make virtual worlds more lively and realistic and they also create the potential for moments of amazement and surprise. In many cases, game dynamics are driven by a combination of random seeds, player records and procedural algorithms. Games can even incorporate the player's real-world behavior to create dynamic responses. The best practices illustrate how dynamic elements improve the user experience and increase the replay value. The book draws upon interdisciplinary approaches; researchers and practitioners from Game Studies, Computer Science, Human-Computer Interaction, Psychology and other disciplines will find this book to be an exceptional resource of both creative inspiration and hands-on process knowledge. |
You may like...
The Age of AI - And Our Human Future
Henry A. Kissinger, Eric Schmidt, …
Paperback
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
|