![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
The book focuses on machine learning. Divided into three parts, the first part discusses the feature selection problem. The second part then describes the application of machine learning in the classification problem, while the third part presents an overview of real-world applications of swarm-based optimization algorithms. The concept of machine learning (ML) is not new in the field of computing. However, due to the ever-changing nature of requirements in today's world it has emerged in the form of completely new avatars. Now everyone is talking about ML-based solution strategies for a given problem set. The book includes research articles and expository papers on the theory and algorithms of machine learning and bio-inspiring optimization, as well as papers on numerical experiments and real-world applications.
This book reviews the state-of-the-art developments in nature-inspired algorithms and their applications in various disciplines, ranging from feature selection and engineering design optimization to scheduling and vehicle routing. It introduces each algorithm and its implementation with case studies as well as extensive literature reviews, and also includes self-contained chapters featuring theoretical analyses, such as convergence analysis and no-free-lunch theorems so as to provide insights into the current nature-inspired optimization algorithms. Topics include ant colony optimization, the bat algorithm, B-spline curve fitting, cuckoo search, feature selection, economic load dispatch, the firefly algorithm, the flower pollination algorithm, knapsack problem, octonian and quaternion representations, particle swarm optimization, scheduling, wireless networks, vehicle routing with time windows, and maximally different alternatives. This timely book serves as a practical guide and reference resource for students, researchers and professionals.
This book examines the present and future of soft computer techniques. It explains how to use the latest technological tools, such as multicore processors and graphics processing units, to implement highly efficient intelligent system methods using a general purpose computer.
Visual content understanding is a complex and important challenge for applications in automatic multimedia information indexing, medicine, robotics, and surveillance. Yet the performance of such systems can be improved by the fusion of individual modalities/techniques for content representation and machine learning. This comprehensive text/reference presents a thorough overview of "Fusion in Computer Vision," from an interdisciplinary and multi-application viewpoint. Presenting contributions from an international selection of experts, the work describes numerous successful approaches, evaluated in the context of international benchmarks that model realistic use cases at significant scales. Topics and features: examines late fusion approaches for concept recognition in images and videos, including the bag-of-words model; describes the interpretation of visual content by incorporating models of the human visual system with content understanding methods; investigates the fusion of multi-modal features of different semantic levels, as well as results of semantic concept detections, for example-based event recognition in video; proposes rotation-based ensemble classifiers for high-dimensional data, which encourage both individual accuracy and diversity within the ensemble; reviews application-focused strategies of fusion in video surveillance, biomedical information retrieval, and content detection in movies; discusses the modeling of mechanisms of human interpretation of complex visual content. This authoritative collection is essential reading for researchers and students interested in the domain of information fusion for complex visual content understanding, and related fields.
This compact book focuses on self-adjoint operators' well-known named inequalities and Korovkin approximation theory, both in a Hilbert space environment. It is the first book to study these aspects, and all chapters are self-contained and can be read independently. Further, each chapter includes an extensive list of references for further reading. The book's results are expected to find applications in many areas of pure and applied mathematics. Given its concise format, it is especially suitable for use in related graduate classes and research projects. As such, the book offers a valuable resource for researchers and graduate students alike, as well as a key addition to all science and engineering libraries.
This book features selected papers presented at The International Science and Technology Conference "FarEastCon", which took place on October 2-4, 2018 in Vladivostok, Russian Federation. The conference represents an informational platform for accumulating expert opinion on projects and initiatives aimed at the implementation of farsighted scientific research and development; it also allows scientific and practical achievements to be shared with a wide circle of researchers. Sections of the conference are of interest for the broad range of experts involved in developing innovative solutions and organizing events that increase the efficiency of economic and innovative activities.
This edited book presents scientific results of 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2014) held on June 30 - July 2, 2014 in Las Vegas Nevada, USA. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 13 outstanding papers from those papers accepted for presentation at the conference.
This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems.
This book gathers the proceedings of the Multidisciplinary International Conference of Research Applied to Defense and Security (MICRADS), held at the Military Engineering Institute, Rio de Janeiro, Brazil, from 8 to 10th May 2019. It covers a variety of topics in systems, communication and defense; strategy and political-administrative vision in defense; and engineering and technologies applied to defense. Given its scope, it offers a valuable resource for practitioners, researchers, and students alike.
This book presents recent research on the evolution of artificial neural development, and searches for learning genes. It is fascinating to see how all biological cells share virtually the same traits, but humans have a decided edge over other species when it comes to intelligence. Although DNA decides the form each particular species takes, does it also account for intelligent behaviour in living beings? The authors explore the factors that are perceived as intelligent behaviour in living beings and the incorporation of these factors in machines using genetic programming, which ultimately provides a platform for exploring the possibility of machines that can learn by themselves, i.e. that can "learn how to learn". The book will be of interest not only to the specialized scientific community pursuing machine intelligence, but also general readers who would like to know more about the incorporation of intelligent behaviour in machines, inspired by the human brain.
This book presents a comprehensive study of different tools and techniques available to perform network forensics. Also, various aspects of network forensics are reviewed as well as related technologies and their limitations. This helps security practitioners and researchers in better understanding of the problem, current solution space, and future research scope to detect and investigate various network intrusions against such attacks efficiently. Forensic computing is rapidly gaining importance since the amount of crime involving digital systems is steadily increasing. Furthermore, the area is still underdeveloped and poses many technical and legal challenges. The rapid development of the Internet over the past decade appeared to have facilitated an increase in the incidents of online attacks. There are many reasons which are motivating the attackers to be fearless in carrying out the attacks. For example, the speed with which an attack can be carried out, the anonymity provided by the medium, nature of medium where digital information is stolen without actually removing it, increased availability of potential victims and the global impact of the attacks are some of the aspects. Forensic analysis is performed at two different levels: Computer Forensics and Network Forensics. Computer forensics deals with the collection and analysis of data from computer systems, networks, communication streams and storage media in a manner admissible in a court of law. Network forensics deals with the capture, recording or analysis of network events in order to discover evidential information about the source of security attacks in a court of law. Network forensics is not another term for network security. It is an extended phase of network security as the data for forensic analysis are collected from security products like firewalls and intrusion detection systems. The results of this data analysis are utilized for investigating the attacks. Network forensics generally refers to the collection and analysis of network data such as network traffic, firewall logs, IDS logs, etc. Technically, it is a member of the already-existing and expanding the field of digital forensics. Analogously, network forensics is defined as "The use of scientifically proved techniques to collect, fuses, identifies, examine, correlate, analyze, and document digital evidence from multiple, actively processing and transmitting digital sources for the purpose of uncovering facts related to the planned intent, or measured success of unauthorized activities meant to disrupt, corrupt, and or compromise system components as well as providing information to assist in response to or recovery from these activities." Network forensics plays a significant role in the security of today's organizations. On the one hand, it helps to learn the details of external attacks ensuring similar future attacks are thwarted. Additionally, network forensics is essential for investigating insiders' abuses that constitute the second costliest type of attack within organizations. Finally, law enforcement requires network forensics for crimes in which a computer or digital system is either being the target of a crime or being used as a tool in carrying a crime. Network security protects the system against attack while network forensics focuses on recording evidence of the attack. Network security products are generalized and look for possible harmful behaviors. This monitoring is a continuous process and is performed all through the day. However, network forensics involves post mortem investigation of the attack and is initiated after crime notification. There are many tools which assist in capturing data transferred over the networks so that an attack or the malicious intent of the intrusions may be investigated. Similarly, various network forensic frameworks are proposed in the literature.
The goal of this book is to provide, in a friendly and refreshing manner, both theoretical concepts and practical techniques for the important and exciting field of Artificial Intelligence that can be directly applied to real-world healthcare problems. Healthcare - the final frontier. Lately, it seems like Pandora opened the box and evil was released into the world. Fortunately, there was one thing left in the box: hope. In recent decades, hope has been increasingly represented by Intelligent Decision Support Systems. Their continuing mission: to explore strange new diseases, to seek out new treatments and drugs, and to intelligently manage healthcare resources and patients. Hence, this book is designed for all those who wish to learn how to explore, analyze and find new solutions for the most challenging domain of all time: healthcare.
This edited book presents scientific results of the 4th International Conference on Applied Computing and Information Technology (ACIT 2016) which was held on December 12-14, 2016 in Las Vegas, USA. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. The aim of this conference was also to bring out the research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the Program Committee, and underwent further rigorous rounds of review. This book captures 11 of the conference's most promising papers, and the readers impatiently await the important contributions that they know these authors are going to bring to the field of computer and information science.
"Efficient Computation of Argumentation Semantics" addresses argumentation semantics and systems, introducing readers to cutting-edge decomposition methods that drive increasingly efficient logic computation in AI and intelligent systems. Such complex and distributed systems are increasingly used in the automation and transportation systems field, and particularly autonomous systems, as well as more generic intelligent computation research. The Series in Intelligent Systems publishes titles that cover
state-of-the-art knowledge and the latest advances in research and
development in intelligent systems. Its scope includes theoretical
studies, design methods, and real-world implementations and
applications. The series publishes titles in three core sub-topic
areas: intelligent automation, intelligent transportation systems,
and intelligent computing.
This book emerged out of a project initiated and funded by the Defense Advanced Research Projects Agency (DARPA) that sought to build on efforts to transform agent-based models into platforms for predicting and evaluating policy responses to real world challenges around the world. It began with the observation that social science theories of human behavior are often used to estimate the consequences of alternative policy responses to important issues and challenges. However, alternative theories that remain subject to contradictory claims are ill suited to inform policy. The vision behind the DARPA project was to mine the social sciences literature for alternative theories of human behavior, and then formalize, instantiate, and integrate them within the context of an agent-based modeling system. The research team developed an experimental platform to evaluate the conditions under which alternative theories and groups of theories applied. The end result was a proof of concept developed from the ground up of social knowledge that could be used as an informative guide for policy analysis. This book describes in detail the process of designing and implementing a pilot system that helped DARPA assess the feasibility of a computational social science project on a large scale.
From finance to artificial intelligence, genetic algorithms are a powerful tool with a wide array of applications. But you don't need an exotic new language or framework to get started; you can learn about genetic algorithms in a language you're already familiar with. Join us for an in-depth look at the algorithms, techniques, and methods that go into writing a genetic algorithm. From introductory problems to real-world applications, you'll learn the underlying principles of problem solving using genetic algorithms. Evolutionary algorithms are a unique and often overlooked subset of machine learning and artificial intelligence. Because of this, most of the available resources are outdated or too academic in nature, and none of them are made with Elixir programmers in mind. Start from the ground up with genetic algorithms in a language you are familiar with. Discover the power of genetic algorithms through simple solutions to challenging problems. Use Elixir features to write genetic algorithms that are concise and idiomatic. Learn the complete life cycle of solving a problem using genetic algorithms. Understand the different techniques and fine-tuning required to solve a wide array of problems. Plan, test, analyze, and visualize your genetic algorithms with real-world applications. Open your eyes to a unique and powerful field - without having to learn a new language or framework. What You Need: You'll need a macOS, Windows, or Linux distribution with an up-to-date Elixir installation.
This book explores and evaluates accounts and models of autistic reasoning and cognition from a computational standpoint. The author investigates the limitations and peculiarities of autistic reasoning and sets out a remediation strategy to be used by a wide range of psychologists and rehabilitation personnel and will also be appreciated by computer scientists who are interested in the practical implementation of reasoning. The author subjects the Theory of Mind (ToM) model to a formal analysis to investigate the limitations of autistic reasoning and proposes a formal model regarding mental attitudes and proposes a method to help those with autism navigate everyday living. Based on the concept of playing with computer based mental simulators, the NL_MAMS, is examined to see whether it is capable of modeling mental and emotional states of the real world to aid the emotional development of autistic children. Multiple autistic theories and strategies are also examined for possible computational cross-overs, providing researchers with a wide range of examples, tools and detailed case studies to work from. Computational Autism will be an essential read to behavioral specialists, researcher's, developers and designers who are interested in understanding and tackling the increasing prevalence of autism within modern society today.
Computational Intelligence in Biomedical Imaging is a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients' medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians' decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational intelligence in computer-aided diagnosis, biological image analysis, and computer-aided surgery and therapy.
Future technical systems will be companion systems, competent assistants that provide their functionality in a completely individualized way, adapting to a user's capabilities, preferences, requirements, and current needs, and taking into account both the emotional state and the situation of the individual user. This book presents the enabling technology for such systems. It introduces a variety of methods and techniques to implement an individualized, adaptive, flexible, and robust behavior for technical systems by means of cognitive processes, including perception, cognition, interaction, planning, and reasoning. The technological developments are complemented by empirical studies from psychological and neurobiological perspectives.
This book constitutes the refereed post-conference proceedings of the 10th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture, CCTA 2016, held in Dongying, China, in October 2016. The 55 revised papers presented were carefully reviewed and selected from 128 submissions. They cover a wide range of interesting theories and applications of information technology in agriculture, including intelligent sensing, cloud computing, key technologies of the Internet of Things, precision agriculture, animal husbandry information technology, including Internet + modern animal husbandry, livestock big data platform and cloud computing applications, intelligent breeding equipment, precision production models, water product networking and big data , including fishery IoT, intelligent aquaculture facilities, and big data applications.
The book consists of 35 extended chapters which have been selected and invited from the submissions to the 4th International Conference on Computational Collective Intelligence Technologies and Applications (ICCCI 2012) held on November 28-30, 2012 in Ho Chi Minh City, Vietnam. The book is organized into six parts, which are semantic web and ontologies, social networks and e-learning, agent and multiagent systems, data mining methods and applications, soft computing, and optimization and control, respectively. All chapters in the book discuss theoretical and practical issues connected with computational collective intelligence and related technologies. The editors hope that the book can be useful for graduate and Ph.D. students in Computer Science, in particular participants in courses on Soft Computing, Multiagent Systems, and Data Mining. This book can be also useful for researchers working on the concept of computational collective intelligence in artificial populations. It is the hope of the editors that readers of this volume can find many inspiring ideas and use them to create new cases of intelligent collectives. Many such challenges are suggested by particular approaches and models presented in individual chapters of this book. The editors hope that readers of this volume can find many inspiring ideas and influential practical examples and use them in their future work.
This book presents adaptive logics as an intuitive and powerful framework for modeling defeasible reasoning. It examines various contexts in which defeasible reasoning is useful and offers a compact introduction into adaptive logics. The author first familiarizes readers with defeasible reasoning, the adaptive logics framework, combinations of adaptive logics, and a range of useful meta-theoretic properties. He then offers a systematic study of adaptive logics based on various applications. The book presents formal models for defeasible reasoning stemming from different contexts, such as default reasoning, argumentation, and normative reasoning. It highlights various meta-theoretic advantages of adaptive logics over other logics or logical frameworks that model defeasible reasoning. In this way the book substantiates the status of adaptive logics as a generic formal framework for defeasible reasoning. |
You may like...
Intelligent Network Design Driven by Big…
Sunil Kumar, Glenford Mapp, …
Hardcover
Mass Customization for Personalized…
Constantinos Mourlas, Panagiotis Germanakos
Hardcover
R4,569
Discovery Miles 45 690
|