![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
Search is not just a box and ten blue links. Search is a
journey: an exploration where what we encounter along the way
changes what we seek. But in order to guide people along this
journey, designers must understand both the art and science of
search.In "Designing the Search Experience, "authors Tony
Russell-Rose and Tyler Tate weave together the theories of
information seeking with the practice of user interface
design. Understand how people search, and how the concepts of information seeking, information foraging, and sensemaking underpin the search process. Apply the principles of user-centered design to the search box, search results, faceted navigation, mobile interfaces, social search, and much more. Design the cross-channel search experiences of tomorrow that span desktop, tablet, mobile, and other devices.
Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader's basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is described and both are used to provide experimental validation of many of the theoretical results. Snake Robots is written in a clear and easily understandable manner which makes the material accessible by specialists in the field and non-experts alike. Numerous illustrative figures and images help readers to visualize the material. The book is particularly useful to new researchers taking on a topic related to snake robots because it provides an extensive overview of the snake robot literature and also represents a suitable starting point for research in this area.
Call Admission Control (CAC) and Dynamic Channel Assignments (DCA) are important decision-making problems in mobile cellular communication systems. Current research in mobile communication considers them as two independent problems, although the former greatly depends on the resulting free channels obtained as the outcome of the latter. This book provides a solution to the CAC problem, considering DCA as an integral part of decision-making for call admission. Further, current technical resources ignore movement issues of mobile stations and fluctuation in network load (incoming calls) in the control strategy used for call admission. In addition, the present techniques on call admission offers solution globally for the entire network, instead of considering the cells independently. CAC here has been formulated by two alternative approaches. The first approach aimed at handling the uncertainty in the CAC problem by employing fuzzy comparators. The second approach is concerned with formulation of CAC as an optimization problem to minimize call drop, satisfying a set of constraints on feasibility and availability of channels, hotness of cells, and velocity and angular displacement of mobile stations. Evolutionary techniques, including Genetic Algorithm and Biogeography Based Optimization, have been employed to solve the optimization problems. The proposed approaches outperform traditional methods with respect to grade and quality of services.
Some of the fundamental constraints of automated machine vision have been the inability to automatically adapt parameter settings or utilize previous adaptations in changing environments. Symbolic Visual Learning presents research which adds visual learning capabilities to computer vision systems. Using this state-of-the-art recognition technology, the outcome is different adaptive recognition systems that can measure their own performance, learn from their experience and outperform conventional static designs. Written as a companion volume to Early Visual Learning (edited by S. Nayar and T. Poggio), this book is intended for researchers and students in machine vision and machine learning.
Micro/Nano Robotics and Automation technologies have rapidly grown associated with the growth of Micro and Nanotechnologies. This book presents a summary of fundamentals in micro-nano scale engineering and the current state of the art of these technologies. "Micro-Nanorobotic Manipulation Systems and their Applications" introduces these advanced technologies from the basics and applications aspects of Micro/Nano-Robotics and Automation from the prospective micro/nano-scale manipulation. The book is organized in 9 chapters including an overview chapter of Micro/Nanorobotics and Automation technology from the historical view and important related research works. Further chapters are devoted to the physics of micro-nano fields as well as to material and science, microscopes, fabrication technology, importance of biological cell, and control techniques. Furthermore important examples, applications and a concise summary of Micro-Nanorobotics and Automation technologies are given.
The importance of human-computer system interaction problems is increasing due to the growing expectations of users on general computer systems capabilities in human work and life facilitation. Users expect system which is not only a passive tool in human hands but rather an active partner equipped with a sort of artificial intelligence, having access to large information resources, being able to adapt its behavior to the human requirements and to collaborate with the human users. This book collects examples of recent human-computer system solutions. The content of the book is divided into three parts. Part I is devoted to detection, recognition and reasoning in different circumstances and applications. Problems associated with data modeling, acquisition and mining are presented by papers collected in part II and part III is devoted to Optimization.
Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs). EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis. This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models. All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current research trends and future perspectives in the enhancement and applicability of EDAs are also covered. The contributions included in the book address topics as relevant as the application of probabilistic-based fitness models, the use of belief propagation algorithms in EDAs and the application of Markov network based EDAs to real-world optimization problems. The book should be of interest to researchers and practitioners from areas such as optimization, evolutionary computation, and machine learning.
This book addresses the challenges of designing high performance analog-to-digital converters (ADCs) based on the "smart data converters" concept, which implies context awareness, on-chip intelligence and adaptation. Readers will learn to exploit various information either a-priori or a-posteriori (obtained from devices, signals, applications or the ambient situations, etc.) for circuit and architecture optimization during the design phase or adaptation during operation, to enhance data converters performance, flexibility, robustness and power-efficiency. The authors focus on exploiting the a-priori knowledge of the system/application to develop enhancement techniques for ADCs, with particular emphasis on improving the power efficiency of high-speed and high-resolution ADCs for broadband multi-carrier systems.
This book offers a self-study program on how mathematics, computer science and science can be profitably and seamlessly intertwined. This book focuses on two variable ODE models, both linear and nonlinear, and highlights theoretical and computational tools using MATLAB to explain their solutions. It also shows how to solve cable models using separation of variables and the Fourier Series.
Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation. Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo search, and multiobjective optimization and many applications. These reviews and chapters not only provide a timely snapshot of the state-of-art developments, but also provide inspiration for young researchers to carry out potentially ground-breaking research in the active, diverse research areas in artificial intelligence, cryptography, machine learning, evolutionary computation, and nature-inspired metaheuristics. This edited book can serve as a timely reference for graduates, researchers and engineers in artificial intelligence, computer sciences, computational intelligence, soft computing, optimization, and applied sciences.
The work described in this book is an excellent example of interdisciplinary research in systems biology. It shows how concepts and approaches from the field of physics can be efficiently used to answer biological questions and reports on a novel methodology involving creative computer-based analyses of high-throughput biological data. Many of the findings described in the book, which are the result of collaborations between the author (a theoretical scientist) and experimental biologists and between different laboratories, have been published in high-quality peer-reviewed journals such as Molecular Cell and Nature. However, while those publications address different aspects of post-transcriptional gene regulation, this book provides readers with a complete, coherent and logical view of the research project as a whole. The introduction presents post-transcriptional gene regulation from a distinct angle, highlighting aspects of information theory and evolution and laying the groundwork for the questions addressed in the subsequent chapters, which concern the regulation of the transcriptome as the primary functional carrier of active genetic information.
This book chiefly presents a novel approach referred to as backward fuzzy rule interpolation and extrapolation (BFRI). BFRI allows observations that directly relate to the conclusion to be inferred or interpolated from other antecedents and conclusions. Based on the scale and move transformation interpolation, this approach supports both interpolation and extrapolation, which involve multiple hierarchical intertwined fuzzy rules, each with multiple antecedents. As such, it offers a means of broadening the applications of fuzzy rule interpolation and fuzzy inference. The book deals with the general situation, in which there may be more than one antecedent value missing for a given problem. Two techniques, termed the parametric approach and feedback approach, are proposed in an attempt to perform backward interpolation with multiple missing antecedent values. In addition, to further enhance the versatility and potential of BFRI, the backward fuzzy interpolation method is extended to support -cut based interpolation by employing a fuzzy interpolation mechanism for multi-dimensional input spaces (IMUL). Finally, from an integrated application analysis perspective, experimental studies based upon a real-world scenario of terrorism risk assessment are provided in order to demonstrate the potential and efficacy of the hierarchical fuzzy rule interpolation methodology.
This book presents mathematical models of mob control with threshold (conformity) collective decision-making of the agents. Based on the results of analysis of the interconnection between the micro- and macromodels of active network structures, it considers the static (deterministic, stochastic and game-theoretic) and dynamic (discrete- and continuous-time) models of mob control, and highlights models of informational confrontation. Many of the results are applicable not only to mob control problems, but also to control problems arising in social groups, online social networks, etc. Aimed at researchers and practitioners, it is also a valuable resource for undergraduate and postgraduate students as well as doctoral candidates specializing in the field of collective behavior modeling.
Nowadays embedded and real-time systems contain complex software. The complexity of embedded systems is increasing, and the amount and variety of software in the embedded products are growing. This creates a big challenge for embedded and real-time software development processes and there is a need to develop separate metrics and benchmarks. "Embedded and Real Time System Development: A Software Engineering Perspective: Concepts, Methods and Principles" presents practical as well as conceptual knowledge of the latest tools, techniques and methodologies of embedded software engineering and real-time systems. Each chapter includes an in-depth investigation regarding the actual or potential role of software engineering tools in the context of the embedded system and real-time system. The book presents state-of-the art and future perspectives with industry experts, researchers, and academicians sharing ideas and experiences including surrounding frontier technologies, breakthroughs, innovative solutions and applications. The book is organized into four parts "Embedded Software Development Process", "Design Patterns and Development Methodology", "Modelling Framework" and "Performance Analysis, Power Management and Deployment" with altogether 12 chapters. The book is aiming at (i) undergraduate students and postgraduate students conducting research in the areas of embedded software engineering and real-time systems; (ii) researchers at universities and other institutions working in these fields; and (iii) practitioners in the R&D departments of embedded system. It can be used as an advanced reference for a course taught at the postgraduate level in embedded software engineering and real-time systems.
This book presents an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The presented ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. It is shown that they are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This book also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions.
This book offers a comprehensive and systematic introduction to the latest research on hesitant fuzzy decision-making theory. It includes six parts: the hesitant fuzzy set and its extensions, novel hesitant fuzzy measures, hesitant fuzzy hybrid weighted aggregation operators, hesitant fuzzy multiple-criteria decision-making with incomplete weights, hesitant fuzzy multiple criteria decision-making with complete weights information, and the hesitant fuzzy preference relation based decision-making theory. These methodologies are implemented in various fields such as decision-making, medical diagnosis, cluster analysis, service quality management, e-learning management and environmental management. A valuable resource for engineers, technicians, and researchers in the fields of fuzzy mathematics, operations research, information science, management science and engineering, it can also be used as a textbook for postgraduate and senior undergraduate students.
Business and medical professionals rely on large data sets to identify trends or other knowledge that can be gleaned from the collection of it. New technologies concentrate on data's management, but do not facilitate users' extraction of meaningful outcomes. Pattern and Data Analysis in Healthcare Settings investigates the approaches to shift computing from analysis on-demand to knowledge on-demand. By providing innovative tactics to apply data and pattern analysis, these practices are optimized into pragmatic sources of knowledge for healthcare professionals. This publication is an exhaustive source for policy makers, developers, business professionals, healthcare providers, and graduate students concerned with data retrieval and analysis.
This book contains an edited selection of the papers accepted for presentation and discussion at the first International Symposium on Qualitative Research (ISQR2016), held in Porto, Portugal, July 12th-14th, 2016. The book and the symposium features the four main application fields Education, Health, Social Sciences and Engineering and Technology and seven main subjects: Rationale and Paradigms of Qualitative Research (theoretical studies, critical reflection about epistemological dimensions, ontological and axiological); Systematization of approaches with Qualitative Studies (literature review, integrating results, aggregation studies, meta -analysis, meta- analysis of qualitative meta- synthesis, meta- ethnography); Qualitative and Mixed Methods Research (emphasis in research processes that build on mixed methodologies but with priority to qualitative approaches); Data Analysis Types (content analysis , discourse analysis , thematic analysis , narrative analysis , etc.); Innovative processes of Qualitative Data Analysis (design analysis, articulation and triangulation of different sources of data - images, audio, video); Qualitative Research in Web Context (eResearch, virtual ethnography, interaction analysis , latent corpus on the internet, etc.); Qualitative Analysis with Support of Specific Software (usability studies, user experience, the impact of software on the quality of research.
This volume comprises a selection of works presented at the Numerical and Evolutionary Optimization (NEO 2016) workshop held in September 2016 in Tlalnepantla, Mexico. The development of powerful search and optimization techniques is of great importance in today's world and requires researchers and practitioners to tackle a growing number of challenging real-world problems. In particular, there are two well-established and widely known fields that are commonly applied in this area: (i) traditional numerical optimization techniques and (ii) comparatively recent bio-inspired heuristics. Both paradigms have their unique strengths and weaknesses, allowing them to solve some challenging problems while still failing in others. The goal of the NEO workshop series is to bring together experts from these and related fields to discuss, compare and merge their complementary perspectives in order to develop fast and reliable hybrid methods that maximize the strengths and minimize the weaknesses of the underlying paradigms. In doing so, NEO promotes the development of new techniques that are applicable to a broader class of problems. Moreover, NEO fosters the understanding and adequate treatment of real-world problems particularly in emerging fields that affect all of us, such as healthcare, smart cities, big data, among many others. The extended papers presented in the book contribute to achieving this goal.
This book is concerned with recent advances in fitness landscapes. The concept of fitness landscapes originates from theoretical biology and refers to a framework for analysing and visualizing the relationships between genotypes, phenotypes and fitness. These relationships lay at the centre of attempts to mathematically describe evolutionary processes and evolutionary dynamics. The book addresses recent advances in the understanding of fitness landscapes in evolutionary biology and evolutionary computation. In the volume, experts in the field of fitness landscapes present these findings in an integrated way to make it accessible to a number of audiences: senior undergraduate and graduate students in computer science, theoretical biology, physics, applied mathematics and engineering, but also researcher looking for a reference or/and entry point into using fitness landscapes for analysing algorithms. Also practitioners wanting to employ fitness landscape techniques for evaluating bio- and nature-inspired computing algorithms can find valuable material in the book. For teaching proposes, the book could also be used as a reference handbook.
This book presents a study in knowledge discovery in data with knowledge understood as a set of relations among objects and their properties. Relations in this case are implicative decision rules and the paradigm in which they are induced is that of computing with granules defined by rough inclusions, the latter introduced and studied within rough mereology, the fuzzified version of mereology. In this book basic classes of rough inclusions are defined and based on them methods for inducing granular structures from data are highlighted. The resulting granular structures are subjected to classifying algorithms, notably k-nearest neighbors and bayesian classifiers. Experimental results are given in detail both in tabular and visualized form for fourteen data sets from UCI data repository. A striking feature of granular classifiers obtained by this approach is that preserving the accuracy of them on original data, they reduce substantially the size of the granulated data set as well as the set of granular decision rules. This feature makes the presented approach attractive in cases where a small number of rules providing a high classification accuracy is desirable. As basic algorithms used throughout the text are explained and illustrated with hand examples, the book may also serve as a textbook.
The book presents a snapshot of the state of the art in the field of fully fuzzy linear programming. The main focus is on showing current methods for finding the fuzzy optimal solution of fully fuzzy linear programming problems in which all the parameters and decision variables are represented by non-negative fuzzy numbers. It presents new methods developed by the authors, as well as existing methods developed by others, and their application to real-world problems, including fuzzy transportation problems. Moreover, it compares the outcomes of the different methods and discusses their advantages/disadvantages. As the first work to collect at one place the most important methods for solving fuzzy linear programming problems, the book represents a useful reference guide for students and researchers, providing them with the necessary theoretical and practical knowledge to deal with linear programming problems under uncertainty. |
You may like...
Bayesian Natural Language Semantics and…
Henk Zeevat, Hans-Christian Schmitz
Hardcover
R3,359
Discovery Miles 33 590
Semantic Analysis of Verbal Collocations…
Alexander Gelbukh, Olga Kolesnikova
Hardcover
R4,011
Discovery Miles 40 110
The Natural Language for Artificial…
Dioneia Motta Monte-Serrat, Carlo Cattani
Paperback
R2,767
Discovery Miles 27 670
Logic and Algorithms in Computational…
Roussanka Loukanova, Peter Lefanu Lumsdaine, …
Hardcover
R4,253
Discovery Miles 42 530
|