![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
During the past decades scheduling has been among the most studied op- mization problemsanditisstillanactiveareaofresearch!Schedulingappears in many areas of science, engineering and industry and takes di?erent forms depending on the restrictions and optimization criteria of the operating en- ronments [8]. For instance, in optimization and computer science, scheduling has been de?ned as "the allocation of tasks to resources over time in order to achieve optimality in one or more objective criteria in an e?cient way" and in production as "production schedule, i. e. , the planning of the production or the sequence of operations according to which jobs pass through machines and is optimal with respect to certain optimization criteria. " Although there is a standardized form of stating any scheduling problem, namely "e?cient allocation ofn jobs onm machines -which can process no more than one activity at a time- with the objective to optimize some - jective function of the job completion times", scheduling is in fact a family of problems. Indeed, several parameters intervene in the problem de?nition: (a) job characteristics (preemptive or not, precedence constraints, release dates, etc. ); (b) resource environment (single vs. parallel machines, un- lated machines, identical or uniform machines, etc. ); (c) optimization criteria (minimize total tardiness, the number of late jobs, makespan, ?owtime, etc. ; maximize resource utilization, etc. ); and, (d) scheduling environment (static vs. dynamic,intheformerthenumberofjobstobeconsideredandtheirready times are available while in the later the number of jobs and their charact- istics change over time).
Humans and machines are very di?erent in their approaches to game pl- ing. Humans use intuition, perception mechanisms, selective search, creat- ity, abstraction, heuristic abilities and other cognitive skills to compensate their (comparably) slow information processing speed, relatively low m- ory capacity, and limited search abilities. Machines, on the other hand, are extremely fast and infallible in calculations, capable of e?ective brute-for- type search, use "unlimited" memory resources, but at the same time are poor at using reasoning-based approaches and abstraction-based methods. The above major discrepancies in the human and machine problem solving methods underlined the development of traditional machine game playing as being focused mainly on engineering advances rather than cognitive or psychological developments. In other words, as described by Winkler and F] urnkranz 347, 348] with respect to chess, human and machine axes of game playing development are perpendicular, but the most interesting, most promising, and probably also most di?cult research area lies on the junction between human-compatible knowledge and machine compatible processing.I undoubtedly share this point of view and strongly believe that the future of machine game playing lies in implementation of human-type abilities (- straction, intuition, creativity, selectiveattention, andother)whilestilltaking advantage of intrinsic machine skills. Thebookisfocusedonthedevelopmentsandprospectivechallengingpr- lems in the area of mind gameplaying (i.e. playinggames that require mental skills) using Computational Intelligence (CI) methods, mainly neural n- works, genetic/evolutionary programming and reinforcement learning."
"This book presents the result of a joint effort from different
European Institutions within the framework of the EU funded project
called SPARK II, devoted to device an insect brain computational
model, useful to be embedded into autonomous robotic agents.
"Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "provides an in-depth look at Web intelligence, and how advanced mathematics and modern computing technology can influence the insights we have on terrorist groups. This book primarily focuses on one famous terrorist group known as Lashkar-e-Taiba (or LeT), and how it operates.After 10 years of counter Al Qaeda operations, LeT is considered by many in the counter-terrorism community to be an even greater threat to the US and world peace than Al Qaeda. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is the first book that demonstrates how to use modern computational analysis techniques including methods for "big data" analysis. This book presents how to quantify both the environment in which LeT operate, and the actions it took over a 20-year period, and represent it as a relational database table. This table is then mined using sophisticated data mining algorithms in order to gain detailed, mathematical, computational and statistical insights into LeT and its operations.This book also provides a detailed history of Lashkar-e-Taiba based on extensive analysis conducted by using open source information and public statements. Each chapter includes a case study, as well as a slide describing the key results which are available on the authors' web sites. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is designed for a professional market composed of government or military workers, researchers and computer scientists working in the web intelligence field. Advanced-level students in computer science will also find this valuable as a reference book."
Intelligent systems are required to facilitate the use of information provided by the internet and other computer based technologies. This book describes the state-of-the-art in Intelligent Automation and Systems Engineering. Topics covered include Intelligent decision making, Automation, Robotics, Expert systems, Fuzzy systems, Knowledge-based systems, Knowledge extraction, Large database management, Data analysis tools, Computational biology, Optimization algorithms, Experimental designs, Complex system identification, Computational modeling, Systems simulation, Decision modeling, and industrial applications.
Computational intelligence techniques are becoming more and more important for automated problem solving nowadays. Due to the growing complexity of industrial applications and the increasingly tight time-to-market requirements, the time available for thorough problem analysis and development of tailored solution methods is decreasing. There is no doubt that this trend will continue in the foreseeable future. Hence, it is not surprising that robust and general automated problem solving methods with satisfactory performance are needed.
Incorporating intelligence in industrial systems can help to increase productivity, cut-off production costs, and to improve working conditions and safety in industrial environments. This need has resulted in the rapid development of modeling and control methods for industrial systems and robots, of fault detection and isolation methods for the prevention of critical situations in industrial work-cells and production plants, of optimization methods aiming at a more profitable functioning of industrial installations and robotic devices and of machine intelligence methods aiming at reducing human intervention in industrial systems operation. To this end, the book analyzes and extends some main directions of research in modeling and control for industrial systems. These are: (i) industrial robots, (ii) mobile robots and autonomous vehicles, (iii) adaptive and robust control of electromechanical systems, (iv) filtering and stochastic estimation for multisensor fusion and sensorless control of industrial systems (iv) fault detection and isolation in robotic and industrial systems, (v) optimization in industrial automation and robotic systems design, and (vi) machine intelligence for robots autonomy. The book will be a useful companion to engineers and researchers since it covers a wide spectrum of problems in the area of industrial systems. Moreover, the book is addressed to undergraduate and post-graduate students, as an upper-level course supplement of automatic control and robotics courses.
This book provides a thorough treatment of privacy and security issues for researchers in the fields of smart grids, engineering, and computer science. It presents comprehensive insight to understanding the big picture of privacy and security challenges in both physical and information aspects of smart grids. The authors utilize an advanced interdisciplinary approach to address the existing security and privacy issues and propose legitimate countermeasures for each of them in the standpoint of both computing and electrical engineering. The proposed methods are theoretically proofed by mathematical tools and illustrated by real-world examples.
This eighteen-chapter book presents the latest applications of lattice theory in Computational Intelligence (CI). The book focuses on neural computation, mathematical morphology, machine learning, and (fuzzy) inference/logic. The book comes out of a special session held during the World Council for Curriculum and Instruction World Conference (WCCI 2006). The articles presented here demonstrate how lattice theory may suggest viable alternatives in practical clustering, classification, pattern analysis, and regression applications.
Evolutionary algorithms (EAs) is now a mature problem-solving family of heuristics that has found its way into many important real-life problems and into leading-edge scientific research. Spatially structured EAs have different properties than standard, mixing EAs. By virtue of the structured disposition of the population members they bring about new dynamical features that can be harnessed to solve difficult problems faster and more efficiently. This book describes the state of the art in spatially structured EAs by using graph concepts as a unifying theme. The models, their analysis, and their empirical behavior are presented in detail. Moreover, there is new material on non-standard networked population structures such as small-world networks. The book should be of interest to advanced undergraduate and graduate students working in evolutionary computation, machine learning, and optimization. It should also be useful to researchers and professionals working in fields where the topological structures of populations and their evolution plays a role.
This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. It will thus be required reading for engineers, statisticians and computer scientists of all kinds. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover numerous topics in detail, including the synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals.
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
Web mining has become a popular area of research, integrating the different research areas of data mining and the World Wide Web. According to the taxonomy of Web mining, there are three sub-fields of Web-mining research: Web usage mining, Web content mining and Web structure mining. These three research fields cover most content and activities on the Web. With the rapid growth of the World Wide Web, Web mining has become a hot topic and is now part of the mainstream of Web - search, such as Web information systems and Web intelligence. Among all of the possible applications in Web research, e-commerce and e-services have been iden- fied as important domains for Web-mining techniques. Web-mining techniques also play an important role in e-commerce and e-services, proving to be useful tools for understanding how e-commerce and e-service Web sites and services are used, e- bling the provision of better services for customers and users. Thus, this book will focus upon Web-mining applications in e-commerce and e-services. Some chapters in this book are extended from the papers that presented in WMEE 2008 (the 2nd International Workshop for E-commerce and E-services). In addition, we also sent invitations to researchers that are famous in this research area to contr- ute for this book. The chapters of this book are introduced as follows: In chapter 1, Peter I.
This volume collects a selection of contributions which has been presented at the 22nd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Italy, Vietri sul Mare (Salerno), during May 17-19, 2012. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book - as well as the workshop- is organized in three main components, two special sessions and a group of regular sessions featuring different aspects and point of views of artificial neural networks and natural intelligence, also including applications of present compelling interest.
This book presents fundamental theoretical results for designing object-oriented programming languages for controlling swarms. It studies the logics of swarm behaviours. According to behaviourism, all behaviours can be controlled or even managed by stimuli in the environment: attractants (motivational reinforcement) and repellents (motivational punishment). At the same time, there are two main stages in reactions to stimuli: sensing (perceiving signals) and motoring (appropriate direct reactions to signals). This book examines the strict limits of behaviourism from the point of view of symbolic logic and algebraic mathematics: how far can animal behaviours be controlled by the topology of stimuli? On the one hand, we can try to design reversible logic gates in which the number of inputs is the same as the number of outputs. In this case, the behaviouristic stimuli are inputs in swarm computing and appropriate reactions at the motoring stage are its outputs. On the other hand, the problem is that even at the sensing stage each unicellular organism can be regarded as a logic gate in which the number of outputs (means of perceiving signals) greatly exceeds the number of inputs (signals).
This book provides readers with a selection of high-quality chapters that cover both theoretical concepts and practical applications of image feature detectors and descriptors. It serves as reference for researchers and practitioners by featuring survey chapters and research contributions on image feature detectors and descriptors. Additionally, it emphasizes several keywords in both theoretical and practical aspects of image feature extraction. The keywords include acceleration of feature detection and extraction, hardware implantations, image segmentation, evolutionary algorithm, ordinal measures, as well as visual speech recognition.
This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation.
Evolutionary Algorithms (EAs) now provide mature optimization tools that have successfully been applied to many problems, from designing antennas to complete robots, and provided many human-competitive results. In robotics, the integration of EAs within the engineer's toolbox made tremendous progress in the last 20 years and proposes new methods to address challenging problems in various setups: modular robotics, swarm robotics, robotics with non-conventional mechanics (e.g. high redundancy, dynamic motion, multi-modality), etc. This book takes its roots in the workshop on "New Horizons in Evolutionary Design of Robots" that brought together researchers from Computer Science and Robotics during the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2009) in Saint Louis (USA). This book features extended contributions from the workshop, thus providing various examples of current problems and applications, with a special emphasis on the link between Computer Science and Robotics. It also provides a comprehensive and up-to-date introduction to Evolutionary Robotics after 20 years of maturation as well as thoughts and considerations from several major actors in the field. This book offers a comprehensive introduction to the current trends and challenges in Evolutionary Robotics for the next decade.
An Advanced Research Workshop (ARW) "Data Fusion Technologies for Harbour Protection" was held in Tallinn, Estonia 27 June-1 July, 2005. This workshop was organized by request of the NATO Security Through Science Programme and the Defence Investment Division. An ARW is one of many types of funded group support mechanisms established by the NATO Science Committee to contribute to the critical assessment of existing knowledge on new important topics, to identify directions for future research, and to promote close working relationships between scientists from different countries and with different professional experiences. The NATO Science Committee was approved at a meeting of the Heads of Government of the Alliance in December 1957, subsequent to the 1956 recommendation of "Three Wise Men" - Foreign Ministers Lange (Norway), Martino (Italy) and Pearson (Canada) on Non-Military Cooperation in NATO. The NATO Science Committee established the NATO Science Programme in 1958 to encourage and support scientific collaboration between individual scientists and to foster scientific development in its member states. In 1999, following the end of the Cold War, the Science Programme was transformed so that support is now devoted to collaboration between Partner-country and NATO-country scientists or to contributing towards research support in Partner countries. Since 2004, the Science Programme was further modified to focus exclusively on NATO Priority Research Topics (i. e. Defence Against Terrorism or Countering Other Threats to Security) and also preferably on a Partner country priority area.
Intelligent Autonomous Systems (IAS) are the physical embodiment of machine intelligence providing a core concept for integrating various advanced techno- gies with pattern recognition and learning. The basic philosophy of IAS research is to explore and understand the nature of intelligence in problems of perception, reasoning, learning and control in order to develop and implement the theory to engineered realization. In other words, the objective is to formulate various me- odologies for the development of robots which can operate autonomously and exhibit intelligent behavior by making appropriate decisions to perform the right task at the right time. Since IAS basically deals with the integration of machines, computing, sensing, and software to create intelligent systems capable of intera- ing with the complexities of the real world, advanced topics like soft computing, artificial life, evolutionary biology, and cognitive psychology have great promise in improving its intelligence and performance. Because of the inter-disciplinary character, the subject has several challenging issues for research, design and development covering a number of disciplines. These issues are further concerned with the development of both technology and methodology apart from various operations. The present research monograph titled "Intelligent Autonomous Systems: Foundations and Applications", edited by two renowned researchers, Professor Dilip K. Pratihar of IIT, Kharagpur, India and Professor Lakhmi C. Jain, Univ- sity of South Australia, Australia, provides a fairly representative cross-section of the activities that is going on all over the world in this area. |
You may like...
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R6,648
Discovery Miles 66 480
Physical Fundamentals of Oscillations…
Leonid Chechurin, Sergej Chechurin
Hardcover
R2,677
Discovery Miles 26 770
Mortal Evidence - The Forensics Behind…
Cyril H. Wecht
Paperback
(1)
|