![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence
This book explores recent developments in the theoretical foundations and novel applications of general and interval type-2 fuzzy sets and systems, including: algebraic properties of type-2 fuzzy sets, geometric-based definition of type-2 fuzzy set operators, generalizations of the continuous KM algorithm, adaptiveness and novelty of interval type-2 fuzzy logic controllers, relations between conceptual spaces and type-2 fuzzy sets, type-2 fuzzy logic systems versus perceptual computers; modeling human perception of real world concepts with type-2 fuzzy sets, different methods for generating membership functions of interval and general type-2 fuzzy sets, and applications of interval type-2 fuzzy sets to control, machine tooling, image processing and diet. The applications demonstrate the appropriateness of using type-2 fuzzy sets and systems in real world problems that are characterized by different degrees of uncertainty.
This book presents different methods for analyzing the body language (movement, position, use of personal space, silences, pauses and tone, the eyes, pupil dilation or constriction, smiles, body temperature and the like) for better understanding people's needs and actions, including biometric data gathering and reading. Different studies described in this book indicate that sufficiently much data, information and knowledge can be gained by utilizing biometric technologies. This is the first, wide-ranging book that is devoted completely to the area of intelligent decision support systems, biometrics technologies and their integrations. This book is designated for scholars, practitioners and doctoral and master's degree students in various areas and those who are interested in the latest biometric and intelligent decision making support problems and means for their resolutions, biometric and intelligent decision making support systems and the theory and practice of their integration and the opportunities for the practical use of biometric and intelligent decision making support.
This book is dedicated to Prof. Dr. Heinz Gerhauser on the occasion of his retirement both from the position of Executive Director of the Fraunhofer Institute for Integrated Circuits IIS and from the Endowed Chair of Information Technologies with a Focus on Communication Electronics (LIKE) at the Friedrich-Alexander-Universitat Erlangen-Nurnberg. Heinz Gerhauser's vision and entrepreneurial spirit have made the Fraunhofer IIS one of the most successful and renowned German research institutions. He has been Director of the Fraunhofer IIS since 1993, and under his leadership it has grown to become the largest of Germany's 60 Fraunhofer Institutes, a position it retains to this day, currently employing over 730 staff. Likely his most important scientific as well as application-related contribution was his pivotal role in the development of the mp3 format, which would later become a worldwide success. The contributions to this Festschrift were written by both Fraunhofer IIS staff and external project team members in appreciation of Prof. Dr. Gerhauser's lifetime academic achievements and his inspiring leadership at the Fraunhofer IIS. The papers reflect the broad spectrum of the institute's research activities and are grouped into sections on circuits, information systems, visual computing, and audio and multimedia. They provide academic and industrial researchers in fields like signal processing, sensor networks, microelectronics, and integrated circuits with an up-to-date overview of research results that have a huge potential for cutting-edge industrial applications.
This book is about the formulations, theoretical investigations, and practical applications of new stochastic models for fundamental concepts and operations of the discipline of risk management. It also examines how these models can be useful in the descriptions, measurements, evaluations, and treatments of risks threatening various modern organizations. Moreover, the book makes clear that such stochastic models constitute very strong analytical tools which substantially facilitate strategic thinking and strategic decision making in many significant areas of risk management. In particular the incorporation of fundamental probabilistic concepts such as the sum, minimum, and maximum of a random number of continuous, positive, independent, and identically distributed random variables in the mathematical structure of stochastic models significantly supports the suitability of these models in the developments, investigations, selections, and implementations of proactive and reactive risk management operations. The book makes extensive use of integral and differential equations of characteristic functions, mainly corresponding to important classes of mixtures of probability distributions, as powerful analytical tools for investigating the behavior of new stochastic models suitable for the descriptions and implementations of fundamental risk control and risk financing operations. These risk treatment operations very often arise in a wide variety of scientific disciplines of extreme practical importance.
In this book, the following three approaches to data analysis are presented: - Test Theory, founded by Sergei V. Yablonskii (1924-1998); the first publications appeared in 1955 and 1958, - Rough Sets, founded by Zdzis aw I. Pawlak (1926-2006); the first publications appeared in 1981 and 1982, - Logical Analysis of Data, founded by Peter L. Hammer (1936-2006); the first publications appeared in 1986 and 1988. These three approaches have much in common, but researchers active in one of these areas often have a limited knowledge about the results and methods developed in the other two. On the other hand, each of the approaches shows some originality and we believe that the exchange of knowledge can stimulate further development of each of them. This can lead to new theoretical results and real-life applications and, in particular, new results based on combination of these three data analysis approaches can be expected. - Logical Analysis of Data, founded by Peter L. Hammer (1936-2006); the first publications appeared in 1986 and 1988. These three approaches have much in common, but researchers active in one of these areas often have a limited knowledge about the results and methods developed in the other two. On the other hand, each of the approaches shows some originality and we believe that the exchange of knowledge can stimulate further development of each of them. This can lead to new theoretical results and real-life applications and, in particular, new results based on combination of these three data analysis approaches can be expected. These three approaches have much in common, but researchers active in one of these areas often have a limited knowledge about the results and methods developed in the other two. On the other hand, each of the approaches shows some originality and we believe that the exchange of knowledge can stimulate further development of each of them. This can lead to new theoretical results and real-life applications and, in particular, new results based on combination of these three data analysis approaches can be expected."
This book is devoted to the state-of-the-art in all aspects of fireworks algorithm (FWA), with particular emphasis on the efficient improved versions of FWA. It describes the most substantial theoretical analysis including basic principle and implementation of FWA and modeling and theoretical analysis of FWA. It covers exhaustively the key recent significant research into the improvements of FWA so far. In addition, the book describes a few advanced topics in the research of FWA, including multi-objective optimization (MOO), discrete FWA (DFWA) for combinatorial optimization, and GPU-based FWA for parallel implementation. In sequels, several successful applications of FWA on non-negative matrix factorization (NMF), text clustering, pattern recognition, and seismic inversion problem, and swarm robotics, are illustrated in details, which might shed new light on more real-world applications in future. Addressing a multidisciplinary topic, it will appeal to researchers and professionals in the areas of metahuristics, swarm intelligence, evolutionary computation, complex optimization solving, etc.
Knowledge existing in modern information systems usually comes from many sources and is mapped in many ways. There is a real need for representing "knowledge pieces" as rather universal objects that should fit to multi-purpose a- ing systems. According to great number of information system's tasks, knowledge representation is more or less detailed (e.g. some level of its granularity is - sumed). The main goal of this paper is to present chosen aspects of expressing granularity of knowledge implemented in intelligent systems. One of the main r- sons of granularity phenomena is diversification of knowledge sources, therefore the next section is devoted to this issue. 2. Heterogeneous Knowledge as a Source for Intelligent Systems Knowledge, the main element of so-called intelligent applications and systems, is very often heterogeneous. This heterogeneity concerns the origin of knowledge, its sources as well as its final forms of presentation. In this section the selected c- teria of knowledge differentiation will be presented, in the context of potential sources of knowledge acquisition. In Fig. 1 an environment of intelligent systems is shown, divided into different knowledge sources for the system. Fig. 1. Potential knowledge sources for intelligent information/reasoning system. Source: own elaboration based on (Mach, 2007) p. 24.
Many problems in decision making, monitoring, fault detection, and control require the knowledge of state variables and time-varying parameters that are not directly measured by sensors. In such situations, observers, or estimators, can be employed that use the measured input and output signals along with a dynamic model of the system in order to estimate the unknown states or parameters. An essential requirement in designing an observer is to guarantee the convergence of the estimates to the true values or at least to a small neighborhood around the true values. However, for nonlinear, large-scale, or time-varying systems, the design and tuning of an observer is generally complicated and involves large computational costs. This book provides a range of methods and tools to design observers for nonlinear systems represented by a special type of a dynamic nonlinear model -- the Takagi--Sugeno (TS) fuzzy model. The TS model is a convex combination of affine linear models, which facilitates its stability analysis and observer design by using effective algorithms based on Lyapunov functions and linear matrix inequalities. Takagi--Sugeno models are known to be universal approximators and, in addition, a broad class of nonlinear systems can be exactly represented as a TS system. Three particular structures of large-scale TS models are considered: cascaded systems, distributed systems, and systems affected by unknown disturbances. The reader will find in-depth theoretic analysis accompanied by illustrative examples and simulations of real-world systems. Stability analysis of TS fuzzy systems is addressed in detail. The intended audience are graduate students and researchers both from academia and industry. For newcomers to the field, the book provides a concise introduction dynamic TS fuzzy models along with two methods to construct TS models for a given nonlinear system
Psychophysics and Experimental Phenomenology of Pattern Cognition examines the cognitive transformations that underly this cognitive system and the specialized subsystems for processing these transformations. Sections cover symmetry cognition, contour perception and geometric illusion. Weight sensation is also discussed, as are repetitive and dot patterns. By incorporating elements of both psychophysics and experimental phenomenology, pattern cognition is examined from both the physical and mental sensory perspective, thus providing a comprehensive view of this cognitive system.
During the past decades scheduling has been among the most studied op- mization problemsanditisstillanactiveareaofresearch!Schedulingappears in many areas of science, engineering and industry and takes di?erent forms depending on the restrictions and optimization criteria of the operating en- ronments [8]. For instance, in optimization and computer science, scheduling has been de?ned as "the allocation of tasks to resources over time in order to achieve optimality in one or more objective criteria in an e?cient way" and in production as "production schedule, i. e. , the planning of the production or the sequence of operations according to which jobs pass through machines and is optimal with respect to certain optimization criteria. " Although there is a standardized form of stating any scheduling problem, namely "e?cient allocation ofn jobs onm machines -which can process no more than one activity at a time- with the objective to optimize some - jective function of the job completion times", scheduling is in fact a family of problems. Indeed, several parameters intervene in the problem de?nition: (a) job characteristics (preemptive or not, precedence constraints, release dates, etc. ); (b) resource environment (single vs. parallel machines, un- lated machines, identical or uniform machines, etc. ); (c) optimization criteria (minimize total tardiness, the number of late jobs, makespan, ?owtime, etc. ; maximize resource utilization, etc. ); and, (d) scheduling environment (static vs. dynamic,intheformerthenumberofjobstobeconsideredandtheirready times are available while in the later the number of jobs and their charact- istics change over time).
Humans and machines are very di?erent in their approaches to game pl- ing. Humans use intuition, perception mechanisms, selective search, creat- ity, abstraction, heuristic abilities and other cognitive skills to compensate their (comparably) slow information processing speed, relatively low m- ory capacity, and limited search abilities. Machines, on the other hand, are extremely fast and infallible in calculations, capable of e?ective brute-for- type search, use "unlimited" memory resources, but at the same time are poor at using reasoning-based approaches and abstraction-based methods. The above major discrepancies in the human and machine problem solving methods underlined the development of traditional machine game playing as being focused mainly on engineering advances rather than cognitive or psychological developments. In other words, as described by Winkler and F] urnkranz 347, 348] with respect to chess, human and machine axes of game playing development are perpendicular, but the most interesting, most promising, and probably also most di?cult research area lies on the junction between human-compatible knowledge and machine compatible processing.I undoubtedly share this point of view and strongly believe that the future of machine game playing lies in implementation of human-type abilities (- straction, intuition, creativity, selectiveattention, andother)whilestilltaking advantage of intrinsic machine skills. Thebookisfocusedonthedevelopmentsandprospectivechallengingpr- lems in the area of mind gameplaying (i.e. playinggames that require mental skills) using Computational Intelligence (CI) methods, mainly neural n- works, genetic/evolutionary programming and reinforcement learning."
"This book presents the result of a joint effort from different
European Institutions within the framework of the EU funded project
called SPARK II, devoted to device an insect brain computational
model, useful to be embedded into autonomous robotic agents.
"Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "provides an in-depth look at Web intelligence, and how advanced mathematics and modern computing technology can influence the insights we have on terrorist groups. This book primarily focuses on one famous terrorist group known as Lashkar-e-Taiba (or LeT), and how it operates.After 10 years of counter Al Qaeda operations, LeT is considered by many in the counter-terrorism community to be an even greater threat to the US and world peace than Al Qaeda. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is the first book that demonstrates how to use modern computational analysis techniques including methods for "big data" analysis. This book presents how to quantify both the environment in which LeT operate, and the actions it took over a 20-year period, and represent it as a relational database table. This table is then mined using sophisticated data mining algorithms in order to gain detailed, mathematical, computational and statistical insights into LeT and its operations.This book also provides a detailed history of Lashkar-e-Taiba based on extensive analysis conducted by using open source information and public statements. Each chapter includes a case study, as well as a slide describing the key results which are available on the authors' web sites. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is designed for a professional market composed of government or military workers, researchers and computer scientists working in the web intelligence field. Advanced-level students in computer science will also find this valuable as a reference book."
Intelligent systems are required to facilitate the use of information provided by the internet and other computer based technologies. This book describes the state-of-the-art in Intelligent Automation and Systems Engineering. Topics covered include Intelligent decision making, Automation, Robotics, Expert systems, Fuzzy systems, Knowledge-based systems, Knowledge extraction, Large database management, Data analysis tools, Computational biology, Optimization algorithms, Experimental designs, Complex system identification, Computational modeling, Systems simulation, Decision modeling, and industrial applications.
Computational intelligence techniques are becoming more and more important for automated problem solving nowadays. Due to the growing complexity of industrial applications and the increasingly tight time-to-market requirements, the time available for thorough problem analysis and development of tailored solution methods is decreasing. There is no doubt that this trend will continue in the foreseeable future. Hence, it is not surprising that robust and general automated problem solving methods with satisfactory performance are needed.
Incorporating intelligence in industrial systems can help to increase productivity, cut-off production costs, and to improve working conditions and safety in industrial environments. This need has resulted in the rapid development of modeling and control methods for industrial systems and robots, of fault detection and isolation methods for the prevention of critical situations in industrial work-cells and production plants, of optimization methods aiming at a more profitable functioning of industrial installations and robotic devices and of machine intelligence methods aiming at reducing human intervention in industrial systems operation. To this end, the book analyzes and extends some main directions of research in modeling and control for industrial systems. These are: (i) industrial robots, (ii) mobile robots and autonomous vehicles, (iii) adaptive and robust control of electromechanical systems, (iv) filtering and stochastic estimation for multisensor fusion and sensorless control of industrial systems (iv) fault detection and isolation in robotic and industrial systems, (v) optimization in industrial automation and robotic systems design, and (vi) machine intelligence for robots autonomy. The book will be a useful companion to engineers and researchers since it covers a wide spectrum of problems in the area of industrial systems. Moreover, the book is addressed to undergraduate and post-graduate students, as an upper-level course supplement of automatic control and robotics courses.
This book provides a thorough treatment of privacy and security issues for researchers in the fields of smart grids, engineering, and computer science. It presents comprehensive insight to understanding the big picture of privacy and security challenges in both physical and information aspects of smart grids. The authors utilize an advanced interdisciplinary approach to address the existing security and privacy issues and propose legitimate countermeasures for each of them in the standpoint of both computing and electrical engineering. The proposed methods are theoretically proofed by mathematical tools and illustrated by real-world examples.
This eighteen-chapter book presents the latest applications of lattice theory in Computational Intelligence (CI). The book focuses on neural computation, mathematical morphology, machine learning, and (fuzzy) inference/logic. The book comes out of a special session held during the World Council for Curriculum and Instruction World Conference (WCCI 2006). The articles presented here demonstrate how lattice theory may suggest viable alternatives in practical clustering, classification, pattern analysis, and regression applications.
Evolutionary algorithms (EAs) is now a mature problem-solving family of heuristics that has found its way into many important real-life problems and into leading-edge scientific research. Spatially structured EAs have different properties than standard, mixing EAs. By virtue of the structured disposition of the population members they bring about new dynamical features that can be harnessed to solve difficult problems faster and more efficiently. This book describes the state of the art in spatially structured EAs by using graph concepts as a unifying theme. The models, their analysis, and their empirical behavior are presented in detail. Moreover, there is new material on non-standard networked population structures such as small-world networks. The book should be of interest to advanced undergraduate and graduate students working in evolutionary computation, machine learning, and optimization. It should also be useful to researchers and professionals working in fields where the topological structures of populations and their evolution plays a role.
This book covers the underlying science and application issues related to aggregation operators, focusing on tools used in practical applications that involve numerical information. It will thus be required reading for engineers, statisticians and computer scientists of all kinds. Starting with detailed introductions to information fusion and integration, measurement and probability theory, fuzzy sets, and functional equations, the authors then cover numerous topics in detail, including the synthesis of judgements, fuzzy measures, weighted means and fuzzy integrals.
Many computer scientists, engineers, applied mathematicians, and physicists use geometry theory and geometric computing methods in the design of perception-action systems, intelligent autonomous systems, and man-machine interfaces. This handbook brings together the most recent advances in the application of geometric computing for building such systems, with contributions from leading experts in the important fields of neuroscience, neural networks, image processing, pattern recognition, computer vision, uncertainty in geometric computations, conformal computational geometry, computer graphics and visualization, medical imagery, geometry and robotics, and reaching and motion planning. For the first time, the various methods are presented in a comprehensive, unified manner. This handbook is highly recommended for postgraduate students and researchers working on applications such as automated learning; geometric and fuzzy reasoning; human-like artificial vision; tele-operation; space maneuvering; haptics; rescue robots; man-machine interfaces; tele-immersion; computer- and robotics-aided neurosurgery or orthopedics; the assembly and design of humanoids; and systems for metalevel reasoning.
Web mining has become a popular area of research, integrating the different research areas of data mining and the World Wide Web. According to the taxonomy of Web mining, there are three sub-fields of Web-mining research: Web usage mining, Web content mining and Web structure mining. These three research fields cover most content and activities on the Web. With the rapid growth of the World Wide Web, Web mining has become a hot topic and is now part of the mainstream of Web - search, such as Web information systems and Web intelligence. Among all of the possible applications in Web research, e-commerce and e-services have been iden- fied as important domains for Web-mining techniques. Web-mining techniques also play an important role in e-commerce and e-services, proving to be useful tools for understanding how e-commerce and e-service Web sites and services are used, e- bling the provision of better services for customers and users. Thus, this book will focus upon Web-mining applications in e-commerce and e-services. Some chapters in this book are extended from the papers that presented in WMEE 2008 (the 2nd International Workshop for E-commerce and E-services). In addition, we also sent invitations to researchers that are famous in this research area to contr- ute for this book. The chapters of this book are introduced as follows: In chapter 1, Peter I. |
You may like...
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R6,687
Discovery Miles 66 870
Diagnostic Biomedical Signal and Image…
Kemal Polat, Saban Ozturk
Paperback
R2,952
Discovery Miles 29 520
|