![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
The subject of this volume in the Astrophysics and Space Science Library is Electro magnetic Radiation in Space. It is essentially based on the lectures given at the third ESRO Summer School which was held from 19 July to 13 August, 1965, in Alpbach, Austria. Fifty-eight selected students attended the courses representing the following countries: Austria (2), Belgium (1), Denmark (1), France (12), Germany (10), Italy (7), Netherlands (2), Spain (4), Sweden (6), Switzerland (3), United Kingdom (9), United States (1). Thirteen lectures courses and nine seminars were given by sixteen different scientists in total. In this book the courses and seminars have been classified in three parts according to the kind of radiation which they mainly deal with: Ultraviolet Radiation, X Radiation and Cosmic Radiation. These parts can be broken down further in theo retical and observational aspects, whereas in the first and second part solar as well as stellar ultraviolet- and X-radiation can be distinguished. * Due to various reasons the publication of this volume had to be delayed; it was therefore judged appropriate to bring the text up to date. The various lecturers have been asked to revise the manuscripts and to eventually add new information which has been acquired in this rapidly evolving field of space astrophysics. Most authors have responded positively to this request, some even have completely rewritten the manuscript."
Energy, chemistry, solvents, and habitats - the basic elements of living systems - define the opportunities and limitations for life on other worlds. This class-tested text examines each of these parameters in crucial depth and makes the argument that life forms we would recognize may be more common in our solar system than many assume. It also considers, however, exotic forms of life that would not have to rely on carbon as basic chemical element, solar energy as a main energy source, or water as primary solvent. Finally the question of detecting bio- and geosignature of such life forms is discussed, ranging from Earth environments to deep space. While speculative considerations in this emerging field of science cannot be avoided, the authors have tried to present their study with the breadth and seriousness that a scientific approach to this issue requires. They seek an operational definition of life and investigate the realm of possibilities that nature offers to realize this very special state of matter and avoid scientific jargon wherever possible to make this intrinsically interdisciplinary subject understandable to a broad range of readers. The second edition thoroughly updates this text in view of the rapid progress in the field and a substantial amount of new material has been added, in particular sections and chapters on adaptation to extreme environments, the future and fate of living systems, life detection concepts based on the thorough analysis of the Viking missions and the issue around the meteorite ALH 84001, and - last but not least - recommendations for the optimization of future space exploration missions. From the reviews of the first edition: " ...] I know of no other book that reassesses the fundamentals of astrobiology in such way. This book is a tacit lesson in open-mindedness tempered with thorough scientific analysis. This is a very important book for all professional astrobiologists." A Ellery, International Journal of Astrobiology, 6 (2007) 182-183
Symposium 148 "The Magellanic Clouds and their Dynamical Interaction with the Milky Way" was the first IAU Symposium held in Australia since 1973. In all, 23 countries were represented by 149 participants. The Symposium was held from July 9 to 13, 1990 at Womens College, the University of Sydney. The last symposium on the Magellanic Clouds' was held in 1983 in Ttibingen, Germany. Since then new ground-and satellite-based instruments have become available. A range of results from these instruments were presented at IAU Symposium 148 and are published in these proceedings. IAU Symposium 148 was timed to coincide with the commissioning of the Australia Telescope, and indeed, a few of the first results from that instrument were presented at this Symposium Over the next decade the Australia Telescope is destined to make a major impact on Magellanic Cloud research. Papers are arranged in five main sections reflecting the Symposium timetable: * Large-Scale Structure and Kinematics * Star Formation and Clustering * Stellar Evolution * The Interstellar Medium * The LMC-SMC-Galaxy System These are preceeded by both the introduction to and the summary of the Symposium. Questions and answers from the oral sessions are reproduced at the end of each section.
John Brockman brings together the world's best-known physicists and science writers--including Brian Greene, Walter Isaacson, Nobel Prize-winners Murray Gell-Mann and Frank Wilczek, and Brian Cox--to explain the universe in all wondrous splendor. In Universe, today's most influential science writers explain the science behind our evolving understanding of the universe and everything in it, including the cutting edge research and discoveries that are shaping our knowledge. Lee Smolin reveals how math and cosmology are helping us create a theory of the whole universe Brian Cox offers new dimensions on the Large Hadron and the existence of a Higgs-Boson particle Neil Turok analyzes the fundamental laws of nature, what came before the big bang, and the possibility of a unified theory. Seth Lloyd investigates the impact of computational revolutions and the informational revolution Lawrence Krauss provides fresh insight into gravity, dark matter, and the energy of empty space Brian Greene and Walter Isaacson illuminate the genius who revolutionized modern science: Albert Einstein and much more. Explore the Universe with some of today's greatest minds: what it is, how it came into being, and what may happen next.
This new scientific biography explores the influences on, and of, Galileo's exceptional work, thereby revealing novel connections with the worldviews of his age and beyond. Galileo Galilei's contribution to science is unquestionable. And his conflict with the church establishment of his time is no less famous. In this book, authored by a physicist and history scholar, Galileo's life and work are described against a backdrop of the prior scientific state of the art in his various fields of achievement. Particular emphasis is placed on Galileo's vision of the world in relation to historic and also future cosmological models. The impact of his discoveries and theories for the later development of physics and astronomy is a further focus of the narrative.
This visual guide is packed with amazing diagrams and infographics to answer all your burning scientific head-scratchers - from gravity and black holes to earthquakes and gene therapy. In How Science Works you will find the most fascinating phenomena in the Universe visually explained, from pulleys to string theory, light to lasers, and chemical reactions to artificial intelligence. If you have ever wondered why the sky is blue, how a black hole works, or what happens in a tsunami, this indispensable guide is for you. Rather than long columns of text, How Science Works is filled with diagrams and infographics, to make even the most difficult concept fun and easy to grasp. Turn the pages to understand dark matter, radioactivity and so much more, and find answers to the really big questions including how life began, will the Universe end, and are we really alone? With hours of enthralling reading, How Science Works is the book you wished you'd had at school and it's the one you'll want for your family.
From the discovery of entirely new kinds of galaxies to a window into cosmic 'prehistory', Bothwell shows us the Universe as we've never seen it before - literally. Since the dawn of our species, people all over the world have gazed in awe at the night sky. But for all the beauty and wonder of the stars, when we look with just our eyes we are seeing and appreciating only a tiny fraction of the Universe. What does the cosmos have in store for us beyond the phenomena we can see, from black holes to supernovas? How different does the invisible Universe look from the home we thought we knew? Dr Matt Bothwell takes us on a journey through the full spectrum of light and beyond, revealing what we have learned about the mysteries of the Universe. This book is a guide to the ninety-nine per cent of cosmic reality we can't see - the Universe that is hidden, right in front of our eyes. It is also the endpoint of a scientific detective story thousands of years in the telling. It is a tour through our Invisible Universe.
Volatiles in the Martian Crust is a vital reference for future missions - including ESA's EXO Mars and NASA's Mars2020 rover - looking for evidence of life on Mars and the potential for habitability and human exploration of the Martian crust. Mars science is a rapidly evolving topic with new data returned from the planet on a daily basis. The book presents chapters written by well-established experts who currently focus on the topic, providing the reader with a fresh, up-to-date and accurate view. Organized into two main sections, the first half of the book focuses on the Martian meteorites and specific volatile elements. The second half of the book explores processes and locations on the crust, including what we have learned about volatile mobility in the Martian crust. Coverage includes data from orbiter and in situ rovers and landers, geochemical and geophysical modeling, and combined data from the SNC meteorites.
For thousands of years, one scientific puzzle has fascinated and perplexed the greatest philosophers, mathematicians, physicists, and psychologists - why do the moon and sun appear so much larger on the horizon than when high up in the sky? Now, two leading psychologists have provided a compelling account of this fascinating illusion. Taking us through the history, the characters involved, the attempts made to explain the illusion, through to modern day studies of visual perception, the book is the most comprehensive account of this puzzle so far. This is a work which will remain, for some time to come, the definitive book on a mystery that has fascinated and tested the greatest minds throughout the ages. Accessibly written, it will appeal to readers of popular science, along with those within the disciplines of psychology, mathematics, astronomy, and philosophy, from undergraduate upwards.
The 2020 International Conference on Uncertainty Quantification & Optimization gathered together internationally renowned researchers in the fields of optimization and uncertainty quantification. The resulting proceedings cover all related aspects of computational uncertainty management and optimization, with particular emphasis on aerospace engineering problems. The book contributions are organized under four major themes: Applications of Uncertainty in Aerospace & Engineering Imprecise Probability, Theory and Applications Robust and Reliability-Based Design Optimisation in Aerospace Engineering Uncertainty Quantification, Identification and Calibration in Aerospace Models This proceedings volume is useful across disciplines, as it brings the expertise of theoretical and application researchers together in a unified framework.
The idea of having a meeting came to the Editors when working on several aspects of galactic Be and B[e] stars. They found that a general summary of the properties of B[e] stars was missing, so that the organiza tion of a first meeting on these objects appeared as very useful. B[e] stars have hydrogen line emission and forbidden [Fe 11] and [0 I] emission lines in their spectra; they are also characterized by a strong IR excess due to circumstellar dust. Having a large amount of extinction in the UV and the visual they have been less frequently observed than other emission line objects. Although about one hundred galactic objects have been classified as B[e], only fif teen or so have been studied in some detail. Besides this, the evolutionary status of these objects is rat her controversial, are they pre-main sequence or stars on the way to become nUclei of planetary nebulae? Other difficult problems appear when considering the relations of these stars with other similar groups, like Herbig AeBe stars, Be, luminous blue variables and the superluminous B[e] stars observed in the Magellanic Clouds. The conference seems timely since large surveys like DENIS and 2Mass, plus new space and new instruments for the micron, millimeter and cen timeter wavelength region will result in the discovery of more stars of this group.
Here, for the first time, in a brilliant, panoramic portrait by the Pulitzer Prize-winning author of The Making of the Atomic Bomb, is the definitive, often shocking story of the politics and the science behind the development of the hydrogen bomb and the birth of the Cold War. Based on secret files in the United States and the former Soviet Union, this monumental work of history discloses how and why the United States decided to create the bomb that would dominate world politics for more than forty years.
Methods and Materials for Remote Sensing: Infrared Photo-Detectors,
Radiometers and Arrays presents the basic principles and the
guidelines for the design of IR and microwave radiometers intended
for the detection of weak electromagnetic signals in a noisy
background.
This thesis discusses the evolution of galaxies through the study of the morphology, kinematics, and star formation properties of a sample of nearby galaxies. The main body of the thesis describes the kinematic observations with the GHaFAS Fabry-Perot instrument on the William Herschel Telescope of a sample of 29 spiral galaxies. The work is closely related to the Spitzer Survey of Stellar Structure in Galaxies, and uses the mid-infrared data of that survey to determine key parameters of the galaxies studied. From these data, important results are obtained on streaming and other non-circular motions in galaxies, on the distribution and rates of star formation, and on how correlations of these parameters and of the rotation curve shape with basic galaxy parameters yield clues on the evolutionary processes taking place in disk galaxies.
This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are: Methods and tools Processes and Sources Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exobiology, early life, extreme environments and planetary resources, all areas where major advancements are expected in the forthcoming decades and both key to human exploration of the Solar System. The target readership includes advanced undergraduate students in geoscience-related topics with no specific planetary science knowledge; undergraduates in other natural science domains (e.g. physics, astronomy, biology or chemistry); graduates in engineering and space systems design who want to complement their knowledge in planetary science. The authors' backgrounds span a broad range of topics and disciplines: rooted in Earth geoscience, their expertise covers remote sensing and cartography, field mapping, impact cratering, volcanology and tectonics, sedimentology and stratigraphy exobiology and life in extreme environments, planetary resources and mining. Several generations of planetary scientists are cooperating to provide a modern view on a discipline developed from Earth during and through Space exploration.
The Hipparcos satellite, developed and launched by the European Space Agency (ESA) in 1989, was the first space mission dedicated to astrometry - the accurate measurement of positions, distances, and proper motions of stars. Amongst the key achievements of its measurements are refining the cosmic distance scale, characterising the large-scale kinematic motions in the Solar neighbourhood, providing precise luminosities for stellar modelling, and confirming Einstein's prediction of the effect of gravity on starlight. This authoritative account of the Hipparcos contributions over the following decade is an outstanding reference for astronomers, astrophysicists and cosmologists. It reviews the applications of the data in different areas, describing the subject and the state-of-the-art before Hipparcos, and summarising all major contributions to the topic made by Hipparcos. It contains a detailed overview of the Hipparcos and Tycho Catalogues, their annexes and their updates. Each chapter ends with comprehensive references to relevant literature.
This book focuses on understanding the stellar populations of massive star clusters and aims to investigate the origin, evolution and properties of binary systems, their collision products, as well as the general characteristics (e.g. ages, metal content) of stellar population(s) in star clusters. It introduces the basic background knowledge of various stellar populations in star clusters as well as their formation, interaction and evolution and offers high impact observational results on our understanding of the formation and evolution mode of star clusters. Based on these discoveries, this book proposes a series of future projects that can shed light on these topics. The research introduced in this book reveals key features of star clusters formation and by extension how all stars formed in our universe.
Cosmic masers, naturally occurring amplifiers of microwave emission from atoms and molecules in the Milky Way and other galaxies, provide important tools to investigate astrophysical environments. The first, hydroxyl (OH) masers were discovered in 1965 and since that time several thousand sources of maser emission, from a variety of cosmic molecules, have been discovered and studied. Because this natural emission occurs at discrete frequencies, which depend upon specific atomic or molecular transitions, masers are also useful for studying the structure and dynamics of our own galaxy. Masers in other galaxies are now used for cosmological studies of the dynamics of massive black holes in galactic nuclei and to directly measure the Hubble constant, H0. This volume contains a comprehensive, up-to-date review of cosmic masers, their nature, sources, environments and uses, as presented at IAU Symposium 287, the fourth international symposium on cosmic masers.
This book presents key works of Boris Hessen, outstanding Soviet philosopher of science, available here in English for the first time. Quality translations are accompanied by an editors' introduction and annotations. Boris Hessen is known in history of science circles for his "Social and Economic Roots of Newton's Principia" presented in London (1931), which inspired new approaches in the West. As a philosopher and a physicist, he was tasked with developing a Marxist approach to science in the 1920s. He studied the history of physics to clarify issues such as reductionism and causality as they applied to new developments. With the philosophers called the "Dialecticians", his debates with the opposing "Mechanists" on the issue of emergence are still worth studying and largely ignored in the many recent works on this subject. Taken as a whole, the book is a goldmine of insights into both the foundations of physics and Soviet history.
R. DIEHL, R. KALLENBACH, E. PARIZOT and R. VON STEIGER / The Astrophysics of Galactic Cosmic Rays 3 I: KEY OBSERVATIONS ON GALACTIC COSMIC RAYS M. E. WIEDENBECK, N. E. YANASAK, A. c. CUMMINGS, AJ. DAVIS, I. S. GEORGE, R. A. LESKE, R. A. MEWALDT, E. C. STONE, P. L. HINK, M. H. ISRAEL, M. LIJOWSKI, E. R. CHRISTIAN and TT VON ROSENVINGE / The Origin of Primary Cosmic Rays: Constraints from ACE Elemental and Isotopic Composition Observations 15 R. A. MEWALDT, N. E. YANASAK, M. E. WIEDENBECK, AJ. DAVIS, w. R. BINNS, E. R. CHRISTIAN, A. C. CUMMINGS, P. L. HINK, R. A. LESKE, S. M. NIEBUR, E. C. STONE and TT VON ROSENVINGE / Radioactive Clocks and Cosmic-Ray Transport in the Galaxy 27 J. J. CONNELL / Cosmic-Ray Composition as Observed by Ulysses 41 R. RAMATY, R. E. LINGENFELTER and B. KOZLOVSKY / Spallogenic Light Elements and Cosmic-Ray Origin 51 E. PARIZOT / Galactic Cosmic Rays and the Light Elements 61 G. MEYNET, M. ARNOULD, G. PAULUS and A. MAEDER / Wolf-Rayet Star Nucleosynthesis and the Isotopic Composition of the Galactic Cosmic Rays 73 S. P. SWORDY / The Energy Spectra and Anisotropies of Cosmic Rays 85 G. TARLE and M. SCHUBNELL / Antiparticles 95 D. MULLER / Cosmic Rays Beyond the Knee 105 II: LESSONS FROM THE HELIOSPHERE G. M. MASON / Heliospheric Lessons for Galactic Cosmic-Ray Acceleration 119 R. A.
Our esteemed colleague C. V. Vishveshwara, popularly known as Vishu, turned sixty on 6th March 1998. His colleagues and well wishers felt that it would be appropriate to celebrate the occasion by bringing out a volume in his honour. Those of us who have had the good fortune to know Vishu, know that he is unique, in a class by himself. Having been given the privilege to be the volume's editors, we felt that we should attempt something different in this endeavour. Vishu is one of the well known relativists from India whose pioneer ing contributions to the studies of black holes is universally recognised. He was a student of Charles Misner. His Ph. D. thesis on the stability of the Schwarzschild black hole, coordinate invariant characterisation of the sta tionary limit and event horizon for Kerr black holes and subsequent seminal work on quasi-normal modes of black holes have passed on to become the starting points for detailed mathematical investigations on the nature of black holes. He later worked on other aspects related to black holes and compact objects. Many of these topics have matured over the last thirty years. New facets have also developed and become current areas of vigorous research interest. No longer are black holes, ultracompact objects or event horizons mere idealisations of mathematical physicists but concrete entities that astrophysicists detect, measure and look for. Astrophysical evidence is mounting up steadily for black holes."
From the beginning of Space Astronomy, the Extreme Ultraviolet band of the spectrum (roughly defined as the decade in energy from 90-900 A...) was deemed to be the unobservable ultraviolet'. Pioneering results from an EUV telescope on the Apollo-Soyuz Mission in 1975 forcibly demonstrated that this view was incorrect; but it required the all-sky surveys of the English Wide-Field Camera and the Extreme Ultraviolet Explorer to demonstrate the broad potential of this field. Over 700 EUV sources have now been detected. Over 150 researchers from 16 countries gathered to share results in this new field at the International Astronomical Union Colloquium No. 152. Papers were presented on a wide variety of topics including cool star coronae, white dwarf atmospheres and evolution, neutron stars, the Io torus, cataclysmic variable stars, active galactic nuclei, the interstellar medium, winds and atmospheres of early type stars, and EUV plasma diagnostics. Selected manuscripts from this meeting are provided in these Conference Proceedings.
This book tells the story of the catastrophic impact of the giant 10 Km asteroid Chicxulub into the ancient Gulf of Mexico 65.5 million years ago. The book begins with a discussion of the nature of asteroids and the likelihood of future Earth-impacts. The story then turns to the discovery of a global sediment layer attributed to the fallout from the impact and a piecing together of the evidence that revealed a monster crater, buried under the Gulf. Reviewed is the myriad of geological and fossil evidence that suggested the disastrous sequence of events occurring when a "nuclear-like" explosion ripped through the sea, Earth, and atmosphere, thus forming the mega-crater and tsunami. The aftermath of the Chicxulub's event initiated decades and more of major global climate changes including a "Nuclear Winter" of freezing darkness and blistering greenhouse warming. A chapter is dedicated to the science of tsunamis and their model generation, including a portrayal of the globally rampaging Chicxulub waves. The asteroid's global devastation killed off some 70% of animal and plant life including the dinosaurs. The study of an ancient Cambrian fossil bed suggests how "roll of the dice" events can affect the future evolution of life on Earth. We see how Chicxulub's apparent destruction of the dinosaurs, followed by the their replacement with small mammals, altered forever the progress of human evolution. This book presents a fascinating glimpse through the lens of the natural sciences - the geology, climatology, and oceanography, of the effects of an enormous astronomical event.
Hidden from human view, accessible only to sensitive receivers attached to huge radio telescopes, giant versions of backyard satellite dishes, the invisible universe beyond our senses continues to fascinate and intrigue our imaginations. We cannot really comprehend what it means to say that a galaxy is exploding, yet that is the nature of some of the distant radio sources in the furthest reaches of space. Closer to home, in the Milky Way galaxy, radio astronomers listen patiently to the ticking of pulsars that tell of star death and states of matter of awesome densities. And between the stars, radio emission from a host of over 120 complex molecules radiate outward to reveal a tale about chemical processes that produce the very stuff of life. And all of this happens out there in the universe hidden from our eyes, even when aided by the Hubble Space Telescope. This is the story of radio astronomy, of how radio waves are generated by stars, supernova, quasars, colliding galaxies, and by the very beginnings of the universe itself. with those huge dishes in the New Mexico desert, in a remote valley in Puerto Rico, in the green Pocahontas Valley in West Virginia, as well as dozens of other remote sites around the world. With each of these observatories, the scientists collect and analyze their data, listening to the radio signals from space, in order to learn what is out there, and perhaps even if someone else may be listening as well.
This volume contains selected and expanded contributions presented at the 3rd Symposium on Space Optical Instruments and Applications in Beijing, China June 28 - 29, 2016. This conference series is organised by the Sino-Holland Space Optical Instruments Laboratory, a cooperation platform between China and the Netherlands. The symposium focused on key technological problems of optical instruments and their applications in a space context. It covered the latest developments, experiments and results regarding theory, instrumentation and applications in space optics. The book is split across five topical sections. The first section covers space optical remote sensing system design, the second advanced optical system design, the third remote sensor calibration and measurement. Remote sensing data processing and information extraction is then presented, followed by a final section on remote sensing data applications. |
You may like...
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Sky Guide 2026 - Southern Africa
Astronomical Society of Southern Africa
Paperback
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
R732
Discovery Miles 7 320
|