![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
One of the most spectacular discoveries of molecular astronomy has been the detection of maser emission. The same radiation that is generated in the laboratory only with elaborate, special equipment occurs naturally in interstellar space. This intense radiation probes the smallest structures that can be studied with radio telescopes. By a fortunate coincidence maser radiation is generated in both star forming regions and the envelopes of late-type stars. The early and late stages in the life of a star are considered to be the most interesting phases of stellar evolution. Maser emission has also been detected in external galaxies. This book provides an extensive coverage of the interstellar maser phenomenon. A precondition for maser action is departure from thermal equilibrium. The book therefore starts with a detailed coverage of the basic background concepts required for an understanding of line formation and radiative transfer. It goes on to describe the theoretical and phenomenological aspects of interstellar masers, their formation sites and the inversion mechanisms. The book will interest active researchers in astronomy and astrophysics as well as in other areas of physics. It is suitable as a textbook in a graduate course and will enable a graduate student to embark on research projects in this exciting area in particular, and molecular radio astronomy in general.
Leading specialists in various disciplines were first invited to a multidisciplinary workshop funded by ICSU on the topic to gain a better appreciation and perspective on the subject of comet/asteroid impacts as viewed by different disciplines. This volume provides a necessary link between various disciplines and comet/asteroid impacts.
This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar-terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.
This edited volume discusses how even small nation states can make a significant difference in the future of space governance. The book is divided into three main sections covering political theory, case studies, and space technology and applications. Key topics of discussion include planetary defense, space mining, and high-power systems in space. Through these timely subjects, the book presents strategies for developing a truly global governance framework in space, based on the concept of a responsible cosmopolitan state. Authored by a multidisciplinary group of researchers from the Czech Republic, the volume will appeal to other scientific teams and policymakers looking to become pioneers of cosmopolitan space policies at a national and global level.
Multiply charged ions have always been in the focus of atomic physics, astrophysics, plasma physics, and theoretical physics. Within the last few years, strong progress has been achieved in the development of ion sources, ion storage rings, ion traps, and methods to cool ions. As a consequence, nowadays, experiments with ensembles of multiply charged ions of brilliant quality are performed in many laboratories. The broad spectrum of the experiments demonstrates that these ions are an extremely versatile tool for investigations in pure and applied physics. It was the aim of this ASI to bring together scientists working in different fields of research with multiply charged ions in order to get an overview of the state of the art, to sound out possibilities for fruitful cooperations, and to discuss perspectives for the future. Accordingly, the programme of the ASI reached from established areas like QED calculations, weak interactions, x-ray astronomy, x-ray lasers, multi photon excitation, heavy-ion induced fusion, and ion-surface interactions up to the very recently opened areas like bound-beta decay, laser and x-ray spectroscopy, and spectrometry of ions in rings and traps, and the interaction of highly charged ions with biological cells. Impressive progress in nearly all of the fields could be reported during the meeting which is documented by the contributions to this volume. The theoretical understand ing of QED and correlation effects in few-electron heavy ions is rapidly developing."
The year 1998 marked the 50th anniversary of the invention of the neutron monitor, a key research tool in the field of space physics and solar-terrestrial relations. In honor of this occasion a workshop entitled 'Cosmic Rays and Earth' was organized to review the detection of cosmic rays at the surface and in the lower atmosphere of Earth, including the effect that this radiation has on the terrestrial environment. A special focus was the role of neutron monitors in the investigation of this radiation, on the science enabled by the unique dataset of the worldwide network of neutron monitors, and on continuing opportunities to use these data to solve outstanding problems. This book is the principal product of that workshop, integrating the contribu tions of all participants. Following a general summary of the workshop prepared by the editors, the volume leads off with a keynote article by Professor John Simpson describing his invention of the neutron monitor in 1948 and the early scientific discoveries made with this instrument."
This accessible guide presents the astrophysical concepts behind astronomical spectroscopy, covering both the theory and the practical elements of recording, processing, analysing and interpreting your spectra. It covers astronomical objects, such as stars, planets, nebulae, novae, supernovae, and events such as eclipses and comet passages. Suitable for anyone with only a little background knowledge and access to amateur-level equipment, the guide's many illustrations, sketches and figures will help you understand and practise this scientifically important and growing field of amateur astronomy, up to the level of Pro-Am collaborations. Accessible to non-academics, it benefits many groups from novices and learners in astronomy clubs, to advanced students and teachers of astrophysics. This volume is the perfect companion to the Spectral Atlas for Amateur Astronomers, which provides detailed commented spectral profiles of more than 100 astronomical objects.
This textbook provides details of the derivation of Lagrange's planetary equations and of the closely related Gauss's variational equations, thereby covering a sorely needed topic in existing literature. Analytical solutions can help verify the results of numerical work, giving one confidence that his or her analysis is correct. The authors-all experienced experts in astrodynamics and space missions-take on the massive derivation problem step by step in order to help readers identify and understand possible analytical solutions in their own endeavors. The stages are elementary yet rigorous; suggested student research project topics are provided. After deriving the variational equations, the authors apply them to many interesting problems, including the Earth-Moon system, the effect of an oblate planet, the perturbation of Mercury's orbit due to General Relativity, and the perturbation due to atmospheric drag. Along the way, they introduce several useful techniques such as averaging, Poincare's method of small parameters, and variation of parameters. In the end, this textbook will help students, practicing engineers, and professionals across the fields of astrodynamics, astronomy, dynamics, physics, planetary science, spacecraft missions, and others. "An extensive, detailed, yet still easy-to-follow presentation of the field of orbital perturbations." - Prof. Hanspeter Schaub, Smead Aerospace Engineering Sciences Department, University of Colorado, Boulder "This book, based on decades of teaching experience, is an invaluable resource for aerospace engineering students and practitioners alike who need an in-depth understanding of the equations they use." - Dr. Jean Albert Kechichian, The Aerospace Corporation, Retired "Today we look at perturbations through the lens of the modern computer. But knowing the why and the how is equally important. In this well organized and thorough compendium of equations and derivations, the authors bring some of the relevant gems from the past back into the contemporary literature." - Dr. David A Vallado, Senior Research Astrodynamicist, COMSPOC "The book presentation is with the thoroughness that one always sees with these authors. Their theoretical development is followed with a set of Earth orbiting and Solar System examples demonstrating the application of Lagrange's planetary equations for systems with both conservative and nonconservative forces, some of which are not seen in orbital mechanics books." - Prof. Kyle T. Alfriend, University Distinguished Professor, Texas A&M University
Observational and Theoretical Issues of Interacting Binaries was the topic of the 22nd Advanced Course of the Swiss Society for Astrophysics and Astronomy. It was the first time that binary systems were the center of attention of our course. The established concept and organisation of the Advanced Course has been retained: three scientists, all acknowledged experts in their respective fields, were each invited to give nine one-hour lectures within the period of a week. The Advanced Course took place from April 6 to 11, 1992, at Les Diablerets, a charming resort in the Swiss alps. The high level of the lectures, the international background of the 65 participants, including many young students, and the beauty of the surroundings all contributed to the success of the course. The lecture notes of this course, the 22nd in our series, are also the third to be published by Springer-Verlag. Well over half of all stars seem to exist in binary systems. The study of binary evolution is therefore essential for our understanding of stellar evolution in general. The evolution of interacting binaries contains in itself many of the problems met in other fields of modern astrophysics. This is very apparent in these lecture notes.
Dynamic compression is an experimental technique with interdisciplinary uses, ranging from enabling the creation of ultracondensed matter under previously impossible conditions to understanding the likely cause of unusual planetary magnetic fields. Readers can now gain an intuitive understanding of dynamic compression; clear and authoritative chapters examine its history and experimental method, as well as key topics including dynamic compression of liquid hydrogen, rare gas fluids and shock-induced opacity. Through an up-to-date history of dynamic compression research, Nellis also clearly shows how dynamic compression addresses and will continue to address major unanswered questions across the scientific disciplines. The past and future role of dynamic compression in studying and making materials at extreme conditions of pressure, density and temperature is made clear, and the means of doing so are explained in practical language perfectly suited for researchers and graduate students alike.
This book provides a first-hand account of modern cosmology, written by three celebrated astronomers renowned for their excellence in both research and teaching. The central theme of the book, the deep Universe, is approached in three truly complementary ways: as a coherent and smooth theory embracing the evolution of the Universe from its original radiations emerging from the hot Big Bang to the present structures of matter; as a meandering, rough road paved by our observations of stars, galaxies, and clusters; and in terms of how these approaches have been gradually developed and intertwined in the historical process that led to the modern science of cosmology.
An astonishing exploration of planet formation and the origins of life by one of the world's most innovative planetary geologists. In 1959, the Soviet probe Luna 3 took the first photos of the far side of the moon. Even in their poor resolution, the images stunned scientists: the far side is an enormous mountainous expanse, not the vast lava-plains seen from Earth. Subsequent missions have confirmed this in much greater detail. How could this be, and what might it tell us about our own place in the universe? As it turns out, quite a lot. Fourteen billion years ago, the universe exploded into being, creating galaxies and stars. Planets formed out of the leftover dust and gas that coalesced into larger and larger bodies orbiting around each star. In a sort of heavenly survival of the fittest, planetary bodies smashed into each other until solar systems emerged. Curiously, instead of being relatively similar in terms of composition, the planets in our solar system, and the comets, asteroids, satellites and rings, are bewitchingly distinct. So, too, the halves of our moon. In When the Earth Had Two Moons, esteemed planetary geologist Erik Asphaug takes us on an exhilarating tour through the farthest reaches of time and our galaxy to find out why. Beautifully written and provocatively argued, When the Earth Had Two Moons is not only a mind-blowing astronomical tour but a profound inquiry into the nature of life here-and billions of miles from home.
Written by a leading expert on comets, this textbook is divided into seven main elements with a view to allowing advanced students to appreciate the interconnections between the different elements. The author opens with a brief introductory segment on the motivation for studying comets and the overall scope of the book. The first chapter describes fundamental aspects most usually addressed by ground-based observation. The author then looks at the basic physical phenomena in four separate chapters addressing the nucleus, the emitted gas, the emitted dust, and the solar wind interaction. Each chapter introduces the basic physics and chemistry but then new specific measurements by Rosetta instruments at comet Churyumov-Gerasimenko are brought in. A concerted effort has been made to distinguish between established fact and conjecture. Deviations and inconsistencies are brought out and their significance explained. Links to previous observations of comets Tempel 1, Wild 2, Hartley 2, Halley and others are made. The author then closes with three smaller chapters on related objects, the loss of comets, and prospects for future exploration. This textbook includes over 275 graphics and figures - most of which are original. Thorough explanations and derivations are included throughout the chapters. The text is therefore designed to support MSc. students and new PhD students in the field wanting to gain a solid overview of the state-of-the-art.
Take your seats for the greatest tour ever - one that encompasses the whole of the Universe. En route, we stop off to gaze at 100 amazing sights - from asteroids to zodiacal dust and from orbit around the Earth to beyond the most distant galaxies. We start right here on Earth, and your tour guides are cosmic voyagers Patrick Moore, Brian May and Chris Lintott: Patrick is a lifelong lunar specialist; Brian is the leading authority on dust in our solar system, and Chris researches the formation of stars and galaxies.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
The last decade of this century has seen a renewed interest in the dynamics and physics of the small bodies of the Solar System, Asteroids, Comets and Meteors. New observational evidences such as the discovery of the Edgeworth-Kuiper belt, refined numerical tools such as the symplectic integrators, analytical tools such as semi-numerical perturbation algorithms and in general a better understanding of the dynamics of Hamiltonian systems, all these factors have converged to make possible and worthwhile the study, over very long time spans, of these "minor" objects. Also the public, the media and even some political assell}blies have become aware that these "minor" objects of our planetary environnement could become deadly weapons. Apparently they did have a role in Earth history and a role more ominous than "predicting" defeat (or victory, why not?) to batches of credulous rulers. Remembering what may have happened to the dinosaurs but keeping all the discretion necessary to avoid creating irrational scares, it may not be unwise or irrelevant to improve our knowledge of the physics and dynamics of these objects and to study in particular their interactions with our planet.
Long-term monitoring is of fundamental significance in solving many important problems in astrophysics and, furthermore, has unequalled value in extending observational runs with small telescopes for the education of young astronomers in order to teach them how to secure high-quality observational data over many years. The Impact of Long-Term Monitoring on Variable Star Research contains reports based on the analysis of data collected in the visible, IR and radio measurement ranges, as well as the design and history of well known photometric systems. Though the reporting of novel results forms an important part of the book, there are also reports of eight discussion sessions covering more general areas, such as extinction monitoring, the problems of archival storage of astronomical data, service observation, the role played by long-term monitoring in graduate teaching and thesis supervision, the interplay between the great observational effort and theory, the contribution of LTM to new knowledge of fundamental data, and the increasing decommissioning of telescopes of modest aperture.
The observation, in 1919 by A.S. Eddington and collaborators, of the gra- tational de?ection of light by the Sun proved one of the many predictions of Einstein's Theory of General Relativity: The Sun was the ?rst example of a gravitational lens. In 1936, Albert Einstein published an article in which he suggested - ing stars as gravitational lenses. A year later, Fritz Zwicky pointed out that galaxies would act as lenses much more likely than stars, and also gave a list of possible applications, as a means to determine the dark matter content of galaxies and clusters of galaxies. It was only in 1979 that the ?rst example of an extragalactic gravitational lens was provided by the observation of the distant quasar QSO 0957+0561, by D. Walsh, R.F. Carswell, and R.J. Weymann. A few years later, the ?rst lens showing images in the form of arcs was detected. The theory, observations, and applications of gravitational lensing cons- tute one of the most rapidly growing branches of astrophysics. The gravi- tional de?ection of light generated by mass concentrations along a light path producesmagni?cation,multiplicity,anddistortionofimages,anddelaysp- ton propagation from one line of sight relative to another. The huge amount of scienti?c work produced over the last decade on gravitational lensing has clearly revealed its already substantial and wide impact, and its potential for future astrophysical applications. |
You may like...
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R548
Discovery Miles 5 480
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Sky Guide 2026 - Southern Africa
Astronomical Society of Southern Africa
Paperback
|