![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time
This is a book about real time in economics, a dimension increasingly unused by the edge of the profession. This, it is argued, has serious implications for economics' role as the premier policy-advising source for national governments and international organizations. It is also a book about the great waves of economic change that economists have failed even to identify, let alone analyze. This failure has created an intellectual vacuum that natural scientists are now only attempting to fill. It is a book, therefore, that challenges economics to put its house in order before it is engulfed by this rising tide. But, the question is, will economics have time? By the author of "Depression and Recovery: Western Australia 1929-1939", "Exploring Southeast Asia's Economic Past" and "Domesday Economy: A New Approach to Anglo-Norman History".
Der bekannte Astronom Karl Schwarzschild (1873-1916) gilt als der Begrunder der Astrophysik und als hervorragender Forscher mit einer erstaunlichen Bandbreite seiner Interessen. Arbeiten zur Himmelsmechanik, Elektrodynamik und Relativitatstheorie weisen ihn als vorzuglichen Mathematiker und Physiker auf der Hohe seiner Zeit aus. Untersuchungen zur Photographischen Photometrie, Optik und Spektroskopie zeigen den versierten Beobachter, der sein Messinstrumentarium beherrscht, und schliesslich arbeitete Schwarzschild als Astrophysiker an Sternatmospharen, Kometen, Struktur und Dynamik von Sternsystemen. Die in seinem kurzen Leben entstandene Fulle an wissenschaftlichen Arbeiten ist in drei Banden der Gesamtausgabe gesammelt, erganzt durch biographisches Material, Annotationen von Fachleuten und einen Essay des Nobelpreistragers S. Chandrasekhar."
Since the first rocket-technology experiments of the early 20th century, space exploration has captivated the world. Recent advances and setbacks have included the new discoveries from the Galileo mission, the Mars Global Surveyor's revelation that water once existed on the Red Planet, the International Space Station, the advent of space tourism, and the devastating Space Shuttle disasters. This one-stop guide to space exploration provides a wealth of information for student researchers. A substantial 'Chronology of Events' and a narrative history outline the key events and people in the progression of space research and activity. Five topical essays--including a look at the Space Shuttle--examine several significant issues related to the politics and technology of space exploration from an international perspective. These chapters elucidate several sets of documents that give shape and substance to the larger story. Primary documents in this volume are organized by theme and represent the variety of materials available to anyone seeking a better understanding of the rise of space exploration. Also included are biographical sketches of key people associated with space flight, a listing of the human space flight missions undertaken since 1961, and an annotated bibliography of additional reading.
This book is the proceedings of a workshop on stellar continuum radio astronomy that was held in BoUlder, Colorado on August 8-10, 1984. Although it was originally intended to be a small workshop with participants mainly from North America, it evolved to a workshop with 72 partiCipants from twelve countries (U.S.A. 52, Canada 3, the Netherlands 3, United Kingdom 3, Australia 2, Ireland 2, Italy 2, France 1, Mexico 1, Switzerland 1, West Germany 1, and U.S.S.R. 1). This workshop was sponsored by the Joint Institute of Laboratory Astrophysics (JILA) and the University of Colorado. In order to preserve a workshop atmosphere, while still presenting both extensive reviews and contributed papers, an experimental format was adopted. All contributed papers related to the topiCS of the day were presented in poster form in the early morning and were accessible all day. During each morning (or afternoon) session review papers were presented, followed by a coffee break in the poster area adjacent to the conference room. Then the review papers and contributed papers were discussed for roughly one and a half hours. The last session was devoted to invited panel papers and discussion of current and future problems in the field of stellar radio astronomy.
Many important observational clues about our understanding of how stars and planets form in the interior of molecular clouds have been amassed using recent technological developments. ESO's very large telescope promises to be a major step forward in the investigation of stellar nurseries and infant stars. This volume collects papers from the leaders in this very timely field of astrophysical research. It presents theoretical and a host of observational results and many papers show the plans for future observations.
This proceedings covers topics from chemical abundances in the different components of the Milky Way and in local group galaxies, via observational and theoretical papers on mixing in stars to big bang nucleosynthesis and galaxy formation and evolution. Like all volumes in the series ESO Astrophysics Symposia, this one gives a comprehensive overview of the forefront of research in this subject. It is a valuable reference for both students and researchers.
Solar Physics publishes up to two TopicalIssues per year that focus on areas of especially vigorousand activeresearch. The present TopicalIssue containspapers of recent results on the solar corona, as well as on the transition region and low solar wind. The majority of these papers, which were all refereed in accordance withthe standards of Solar Physics, werepresentedin August 1999at a workshop heldin Monterey, California. TheSun's magneticfieldis responsibleforthe spectacularly dynamicand intri- cate phenomenonthat we call the corona. The past decade has seen an enormous increase in our understanding of this part of the solar outer atmosphere, both as a result of observations and because of rapid advances in numerical studies.The Yohkoh satellitehasobservedthe Sun nowfor overeightyears, producingspectac- ular sequences of images that conveythe complexity of the corona. The imaging andspectroscopic instrumentsonSOHOhaveaddedinformationonthecoolerpart of the corona. Andsince April of 1998TRACEhas givenus very high resolution imagesof the 1-2 MKcorona, atcadencesthat allowdetailedobservations of field oscillations, loopevolution, mass ejecta, etc. The papers of thisTopicalIssue revolvearoundone keytheme:the entire outer atmosphereof the Sun is intrinsicallydynamic, evolvingso rapidly that even the concept of a single local temperaturefor a single fluid often breaks down. More- over, the corona is an intrinsicallynonlinearand non-localmedium.These aspects are discussedin thisTopicalIssue, includingboth papers that reviewrecentdevel- opments(both basedon observations and on theoretical/numerical modeling), and original research papers based on observations from many different observatories. Weareverygratefulto the manyrefereeswhoweregivenlittletimeto respond, andto the staffofKluwerfor theproductionofthetopicalissuesandtheirreprints. Thepapers acceptedforthisTopicalIssueadduptosuchavolumethattheyhaveto be distributedovertwo TopicalIssues of SolarPhysics (December 1999and April 2000),which are reprintedin two bound volumes, of whichthis is the second.
A complete account of the fundamental techniques of general relativity and their application to cosmology. The book includes reviews of the different cosmological models and their classification, including such topics as causality and horizons, the cosmological parameters, observational tests and constraints of cosmology, symmetries and the large scale topology of space and space-time, and the use of supernovas as cosmological indicators. The perturbations to the cosmological models are discussed throughout the volume. The cosmic microwave background is presented, with an emphasis in secondary distortions in relation to cosmological models and large scale structures. Recent results on dark matter are summarised. A general review of primordial nucleosynthesis is given. Gravitational lensing is discussed in great detail. Most contributions show a balance between theory and observation. Readership: A solid background for students and researchers intending to work in the field of theoretical and observational cosmology.
Peter Gabriel Bergmann started his work on general relativity in 1936 when he moved from Prague to the Institute for Advanced Study in Princeton. Bergmann collaborated with Einstein in an attempt to provide a geometrical unified field theory of gravitation and electromagnetism. Within this program they wrote two articles together: A. Einstein and P. G. Bergmann, Ann. Math. 39, 685 (1938) ; and A. Einstein, V. Bargmann and P. G. Bergmann, Th. von Karman Anniversary Volume 212 (1941). The search for such a theory was intense in the ten years following the birth of general relativity. In recent years, some of the geometrical ideas proposed in these publications have proved essential in contemporary attempts towards the unification of all interactions including gravity, Kaluza-Klein type theories and supergravity theories. In 1942, Bergmann published the book "Introduction to the Theory of Relativity" which included a foreword by Albert Einstein. This book is a reference for the subject, either as a textbook for classroom use or for individual study. A second corrected and enlarged edition of the book was published in 1976. Einstein said in his foreword to the first edition: "Bergmann's book seems to me to satisfy a definite need. . . Much effort has gone into making this book logically and pedagogically satisfactory and Bergmann has spent many hours with me which were devoted to this end.
Audouin Dollfus Observatoire de Paris, Section de Meudon, 92195 Meudon, FRfu CE The North Atlantic Treaty Organization (NATO) and, in particular, its Department of Scientific Affairs headed by Dr. C. Sinclair, actively supports new fields of science. The recent exploration of the outer parts of the Solar System by spacecraft focused the attention of a large community of scientists on the problem of ices, which playa major role in the accretionary processes in space except for the close neighborhood of the Sun and of other stars. NATO responded to this new interest by agreeing to sponsor an Advanced Research Workshop "Ices in the Solar System," provided a proper organizing body could be set up. It was a pleasure to organize such a workshop jointly with Profes sor Roman Smoluchowski who had earlier organized similar conferences. I knew from the experience of others who managed such meetings in the past that there would be much work, but the opportunity of cooperating with Smoluchowski was very attractive and convinced me to agree. If well organized, the whole project promised to be more than rewarding for a large community of scientists, both in the short run and in the long run, by clarifying certain outstanding questions in astrophysics. It became clear that a well-organized international conference would attract top scientists and help unravel many fundamental problems."
Highly ionized atoms in the general interstellar gas of the galactic disk were first detected through interstellar absorption line observations of 0 VI with the Copernicus satellite (Rogerson et al. 1973). Survey measurements by Jenkins (1978) of interstellar 0 VI absorption toward 72 stars demonstrated the general presence of 0 VI in the interstellar medium of the galactic disk. This researcIi. and parallel observational studies of the soft X-ra}' background (Williamson et al. 1974; McCammon et al. 1983; Marshall and ClarK 1984) provided direct evidence for the existence of hot low density gas in the mterstellar medium of the galactic disk. The extension of the aDsorption line studies to the distant gas of the galactic halo required the launch of the International Ultraviolet Explorer (IUE) satellite in 1978. The first measures of highly ionized gas m the galactic halo were obtained with the IDE when it was used to record high resolution spectra of bright stars in the Large Magellanic Cloud (Savage and de Boer 1979). Those early spectra revealed the presence of absorption by Si IV and C IV in the galactic nalo and have been followed by a number of surveys with IUE of nighly ionized gas in the galactic disk and halo (Savage and de Boer 1981; Pettini and West 1982; Savage and Massa 1987). The study of UV emission from highly ionized gas in the halo has progressed more slowly because of the intrinsic faintness of the emission.
The Andromeda Galaxy, or M31, is an attractive galaxy for astronomers. It is close to us, it is of about the size of our galaxy, it provides some intriguing observational puzzles because the galaxy is nearly edge-on, and many objects can be studied in detail, because they are still sufficiently bright. With the current developments in instrumentation with which increasingly detailed studies of the Andromeda Galaxy can be made, this book provides a solid foundation for the start of new observations. This book is a mine of information about M31. It can be used as a reference by insiders, and at the same time it provides easy access for newcomers to the field.
Even the casual reader cannot fail to notice the somewhat uneven presentation of the contributions contributians to this volume, in particular what concerns the st style. yle. A closer scrutiny will also reveal that whereas the English language is certainly the preferred vehicle for commu- nication in astronomy, it is not the mother tongue of all contributors. However, while editing this volume I have felt that it would be more important to assure a speedy publication than to attempt to achieve a high degree of uniformity, which would anyhow be extremely diffi- cult with more than 100 eontributing contributing authors. When published, this book should stiIl still be a tool for aetive active research, not a museum pieee. piece. I am grateful to the organizers and editors of the individual sections seetions for having produced produeed their parts with within in the allotted time, and with a high degree of professionalism. A special speeial word of thanks goes to my eollaborators collaborators at the European Southern Observatory, Mrs. E. Volk, Volk, Mr. Nr. C. Madsen, and Mr. J. _Leelereqz, _Leclercqz, for technical teehnieal assistanee. assistance.
The study of planet formation has been revolutionized by recent observational breakthroughs, which have allowed the detection and characterization of extrasolar planets, the imaging of protoplanetary disks, and the discovery of the Solar System's Kuiper Belt. Written for beginning graduate students, this textbook provides a basic understanding of the astrophysical processes that shape the formation of planetary systems. It begins by describing the structure and evolution of protoplanetary disks, moves on to the formation of planetesimals, terrestrial and gas giant planets, and concludes by surveying new theoretical ideas for the early evolution of planetary systems. Covering all phases of planet formation - from protoplanetary disks to the dynamical evolution of planetary systems - this introduction can be understood by readers with backgrounds in planetary science, and observational and theoretical astronomy. It highlights the physical principles underlying planet formation and the areas where more research and new observations are needed.
Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of optical molasses, and the cesium fountain standard; and the time-based global navigation systems, Loran-C and the Global Positioning System. Also included are topics that bear on the precision and absolute accuracy of standards, such as noise, resonance line shape, the relativistic Doppler effect as well as more general relativistic notions of time relevant to synchronization of remote clocks, and time reversal symmetry. the development of atomic clocks in the first edition, but brings up to date the extraordinary developments in recent years, culminating in clocks based on quantum resonance at optical frequency in individual ions confined in miniature electromagnetic traps. These, together with advances in the generation of wide-band coherent frequency combs spanning the spectrum as far as the optical range, has made possible the direct measurement of phenomena occurring at optical frequencies As a result of these recent advances, in addition to the time-based GPS and LORAN C navigation systems treated in the first edition, other important applications of a fundamental scientific interest have become feasible. These include satellite-borne tests of the theory of general relativity and the equivalence principle on which it is based.
The successes of the standard models of particle physics and cosmology are many, but have proven incapable of explaining all the phenomena that we observe. This book investigates the potentially important role of quantum physics, particularly quantum anomalies, in various aspects of modern cosmology, such as inflation, the dynamical generation of the visible and dark matter in the universe, and gravitational waves. By doing so, the authors demonstrate that exploring the links between cosmology and particle physics is key to helping solve the mysteries of our Universe.
The XVlllth General Assembly of the International Astronomical Union was held in Patras, Greece, from 17-26 August 1982. It was marked by the tragic death of the President of the IAU, Professor M.K.V. Bappu, on August 19, 1982. This sad event, without precedent in the history of the Union, posed serious problems to the organization of the General Assembly, which could only be overcome by the full collaboration of all members, the organizers, and the Executive Committee. A tribute to the memory of Prof. Bappu was paid during a plenary meeting on 23 August 1982. The full texts of the speeches are published in Chapter I of this . volume. The excellent scientific programme in Patras was organized by the Presidents of the 40 IAU Commissions and coordinated by the IAU General Secretary (1979-1982), Professor P.A. Wayman. The local arrangements were taken care of by Professor C. Goudas and his collaborators from the Patras University. Due to the unexpected withdrawal in 1979 of another invitation to host the 1982 IAU General Assembly, the organizers in Greece had less than two years available for the extensive preparations, and our hearty thanks are due to them for their persistent efforts, which made this General Assembly an outstanding success.
Over the past two decades auroral science has developed from a somewhat mysterious and imprecise specialty into a discipline central in the study of the ionosphere and magnetosphere. The investigation of aurora unites scientists with very different backgrounds and interests so that it is difficult to write a self-contained account of the field in a book of reasonable length. In this work I have attempted to include those aspects of theory which I have found valuable in predicting the effects on the atmosphere of auroral particle precipitation. In addition I have attempted to describe the techniques of observation with particular emphasis on optical methods which have been useful. While the aeronomy of aurora has been regarded as central, the mechanisms by which particles are accelerated and precipitated into the atmosphere is of no less interest. This aspect of the subject has however been treated in a briefer fashion since it is a part of the immense and rapidly developing field of magnetospheric science. Generally I have attempted to provide a coherent introduction to auroral science with an emphasis on relatively simple physical interpretations and models. References are given to enable the reader to find more extensive or rigorous discussions of particular topics. A fairly complete, quantitative atlas of the auroral spectrum is included.
IAU Symposium No. 134 on Active Galactic Nuclei was hosted by the Lick Observatory, as part of the celebration of its centennial, for the Observatory went into operation as part of the University of California on June 1, 1888. Twenty years later, in 1908, Lick Observatory graduate student Edward A. Fath recognized the unusual emission-line character of the spectrum of the nucleus of the spiral "nebula" NGC 1068, an object now well-known as one of the nearest and brightest Seyfert galaxies and active galactic nuclei. Ten years after that, and seventy years before this Symposium, Lick Observatory faculty member Heber D. Curtis published his description of the "curious straight ray" in M 87, "apparently connected with the nucleus by a thin line of matter," which we now recognize as an example of one of the jets which are the subject of so much current AGN research. The symposium was held at Kresge College on the campus of the University of California, Santa Cruz, only a short walk through the redwood groves to the Lick Observatory offices. A total of 232 astronomers and astrophysicists from 24 countries attended and took part in the Symposium. About 200 more had applied to come, but could not be accepted in order to keep the meeting at a reasonable size. Most of the participants lived in the Kresge College apartments immediately adjacent to the Kresge Town Hall in which the oral sessions took place.
This textbook is a basic introduction to kinetic plasma phenomena in solar and stellar coronae. The author unifies observations and theory which gives a wide perspective to the subject. An important feature is the lucidly written presentation of the fundamentals of plasma physics. The basic theory developed is then extended to some exemplary and important observations of coronal dynamics, such as coronal current, particle acceleration, propagation of particle beams, and shocks. The book has grown from the author's introductory courses on plasma astrophysics at the Swiss Federal Institute of Technnology (ETH). It is aimed at advanced undergraduates and first-year graduate students without a background in plasma physics. It should also be of interest to more senior research workers involved in coronal physics, solar/stellar winds, and various other fields of plasma astrophysics. Problems suitable for class use are included at the end of each chapter.
The high accuracy of modern astronomical spatial-temporal reference systems has made them considerably complex. This book offers a comprehensive overview of such systems. It begins with a discussion of 'The Problem of Time', including recent developments in the art of clock making (e.g., optical clocks) and various time scales. The authors address the definitions and realization of spatial coordinates by reference to remote celestial objects such as quasars. After an extensive treatment of classical equinox-based coordinates, new paradigms for setting up a celestial reference system are introduced that no longer refer to the translational and rotational motion of the Earth. The role of relativity in the definition and realization of such systems is clarified. The topics presented in this book are complemented by exercises (with solutions). The authors offer a series of files, written in Maple, a standard computer algebra system, to help readers get a feel for the various models and orders of magnitude. Beyond astrometry, the main fields of application of high-precision astronomical spatial-temporal reference systems and frames are navigation (GPS, interplanetary spacecraft navigation) and global geodynamics, which provide a high-precision Celestial Reference System and its link to any terrestrial spatial-temporal reference system. Mankind's urgent environmental questions can only be answered in the context of appropriate reference systems in which both aspects, space and time, are realized with a sufficiently high level of accuracy. This book addresses all those interested in high-precision reference systems and the various techniques (GPS, Very Long Baseline Interferometry, Satellite Laser Ranging, Lunar Laser Ranging) necessary for their realization, including the production and dissemination of time signals.
Small and large telescopes are being installed all around the world. Astronomers have thus acquired better access to more modern equipment; not in the least to photometers, which are very important tools for the contemporary observer. This development of higher quality and more sensitive equipment makes it very necessary to improve the accuracy of the measurements. This guide helps the astronomer and astronomy student to improve the quality of their photometric measurements and to extract a maximum of information from their observations. The book is based on the authors' observing experience, spending numerious nights behind various instruments at many different observatories.
The emerging study of technology in space has been shaping human interaction with physical, social, and technological worlds. Drawing upon a wide range of information technology disciplines, this field is now grabbing the attention of many, including computer scientists, anthropologists, and psychologists craving for more on this intriguing new field.""Exploration of Space, Technology, and Spatiality: Interdisciplinary Perspectives"" offers stimulating research currently bridging the areas of space, spatiality, and technology. A must-read for researchers and scholars working at the intersection of physical, social, and technological space, this book provides critical research from leading experts in the space technology domain - an essential resource for any academic collection.
The book summarizes international progress over the last few decades in upper atmosphere airglow research. Measurement methods, theoretical concepts and empirical models of a wide spectrum of upper atmospheric emissions and their variability are considered. The book contains a detailed bibliography of studies related to the upper atmosphere airglow. Readers will also benefit from a lot of useful information on emission characteristics and its formation processes found the book.
This volume, together with its two companion volumes, originated in a study commis sioned by the United States National Academy of Sciences on behalf of the National Aeronautics and Space Administration. A committee composed of Tom Holzer, Dimitri Mihalas, Roger Ulrich and myself was asked to prepare a comprehensive review of current knowledge concerning the physics of the Sun. We were fortunate in being able to persuade many distinguished scientists to gather their forces for the preparation of 21 separate chapters covering not only solar physics but also relevant areas of astrophysics and solar-terrestrial relations. It proved necessary to divide the chapters into three separate volumes that cover three different aspects of solar physics. Volumes II and III are concerned with 'The Solar Atmosphere' and with 'Astrophysics and Solar-Terrestrial Relations'. This volume is devoted to 'The Solar Interior', except that the volume begins with one chapter reviewing the contents of all three volumes. Our study of the solar interior includes a review of nuclear, atomic, radiative, hydrodynamic and hydromagnetic processes, together with reviews of three areas of active current investigation: the dynamo mechanism, internal rotation and magnetic fields, and oscillations. The last topic, in particular, has emerged in recent years as one of the most exciting areas of solar research." |
![]() ![]() You may like...
Alternative Fuels and Advanced Vehicle…
Richard Folkson, Steve Sapsford
Paperback
R7,510
Discovery Miles 75 100
Stream-Tube Method - A Complex-Fluid…
Jean-Robert Clermont, Amine Ammar
Hardcover
R5,276
Discovery Miles 52 760
Machine Learning - A Practical Approach…
Rodrigo F Mello, Moacir Antonelli Ponti
Hardcover
R2,929
Discovery Miles 29 290
Talking To Strangers - What We Should…
Malcolm Gladwell
Paperback
![]()
|