Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time
Solar-Terrestrial Physics: The Study of Mankind's Newest Frontier Solar-Terrestrial Physics (STP) has been around for 100 years. However, it only became known as a scientific discipline under that name when the physical domain studied by STP became accessible to in situ observation and measurement by man or man-made instruments. Indeed, it was STP that provided the initial scientific driving force for the launching of man-made devices into extra-terrestrial space during the International Geophysical Year - aided of course by the genetically engrained drive of humans to expand their frontiers of knowledge, influence and dominance. We may define STP as the discipline dealing with the variable components of solar corpuscular and electromagnetic emissions, the physical processes governing their sources and their propagation through interplanetary space, and the physical-chemical processes related to their interaction with the Earth and other bodies in interplanetary space. Much of STP deals with fully-or partially-ionized gas flows and related energy, momentum and mass transfer in what now appears as one single system made up of distinct but strongly interacting parts, reaching from the photosphere out to the confines of the heliopause, engulfing planets and other solar system bodies, and dipping deep into 6 the Earth's atmosphere.
The idea of this colloquium was first put forward by Prof. P. Keenan when he visited the Centre de Donnees Stellaires, in September 1982. Dr. A. Florsch, Director of the Strasbourg Observatory, kindly accepted to field it at Strasbourg. The scientific organization of the colloquium was in charge of a Committee chaired by Prof. P.C. Keenan and composed by M. Feast, A. Florsch, B. Gustafsson, D. Harmer, M. Jaschek (secretary), R. McClure, A. Maeder, W. Straizys and T. Tsuji. The members of the Committee helped to translate the idea into a very successful meeting. It should be added that this colloquium was the first meeting devoted to late-type peculiar stars. The program was organized by sessions devoted to the following topics : taxonomy, photometric properties, distribution and space motions, chemical com- position, model atmosphere, binary systems and evolutionary tracks. Each session started with a review paper, followed by contributed papers presented as posters. The different sessions were chaired by W. Bidelman, R. Cayrel, Ch. Cowley, A. Heck, H.R. Johnson, J.P. Kaufmann and T. Tsuji, who did an excellent job. The President of the "Louis Pasteur University of Strasbourg", Prof. H. Duranton, welcomed the participants to the University where the sessions were held; Dr. A. Florsch welcomed the participation on be.balf of the French astrono- mical community and Prof. P. Keenan spoke on behalf on the Scientific Organizing Committee.
IAU symposium 165 'Compact Stars in Binaries' was held from 15 through 19 August 1994, as part of the 22nd General Assembly of the IAU in The Hague. The symposium, supported by IAU Commissions 35,37,44 and 48, and co-sponsored by Commission 42, was attended by about 400 to 500 participants. This symposium received support from: - The International Astronomical Union; - The Royal Netherlands Academy of Sciences; - The Netherlands Ministery of Education and Science; - The Leids Kerkhoven Bosscha Fonds; - The Stichting Fysica. The field of compact stars in binaries is one of the most active areas of present-day astrophysics. An absolute highlight of the last few years was the 1993 Nobel Prize of physics, awarded to Taylor and Hulse for their discovery of the binary pulsar PSR 1913+ 16, and the measurement of the orbital decay of this system due to the emission of gravitational waves. The aim of the organizers of the symposium was to present an overview of the most significant observational discoveries of the past decade, in com bination with a review of the most important theoretical developments. We were very happy that most of the world's leading experts in observation and theory were present at the symposium to review the various aspects of the subject. The contents of their oral presentations are now published in the form of these proceedings, which we expect to become an important source of reference for the coming years."
This book summarizes the gathering of information on and the growing understanding of M33 from the 1920s, when Hubble first determined its true nature, to the 21st century, when the Hubble Telescope probed deeply into its many secrets. With its regular symmetrical spiral structure, and its being not tilted too much and near enough to allow detailed studies of its stars, M33 is well-suited for the study of a typical spiral galaxy. In this work, Paul Hodge places current research on M33 (and similar galaxies) in both historical and global perspectives. The book is written in a language accessible for specialists and non-specialists, for professional and amateur astronomers, for scientists and the curious public and, most importantly, for students.
Riccardo Giacconi Harvard/Smithsonian Center for Astrophysics The meeting of the High Energy Astrophysics Division of the American Astronomical Society, held in Cambridge, Massachusetts on January 28- 30, 1980, marks the coming of age of X-ray astronomy. In the 18 years since the discovery of the first extrasolar X-ray source, Sco X-l, the field has experienced an extremely rapid instrumentation development culminating with the launch on November 13, 1978 of the Einstein Ob servatory (HEAO-2) which first introduced the use of high resolution imaging telescopes to the study of galactic and extragalactic X-ray sources. The Einstein Observatory instruments can detect sources as faint as 10-7 Sco X-lor about 17 magnitudes fainter. The technological developments in the field have been paralleled by a host of new discoveries: in the early 1960's the detection of 9 "X-ray stars," objects 10 times more luminous in X-rays than the Sun and among the brightest stellar objects at all wavelengths; in the late 1960's and early 1970's the discovery of the nature of such systems which were identified as collapsed stars (neutron stars and black holes) in mass exchange binary systems, and the detection of the first few extragalactic sources."
The Almagest, by the Greek astronomer and mathematician Ptolemy, is
the most important surviving treatise on early mathematical
astronomy, offering historians valuable insight into the astronomy
and mathematics of the ancient world.
Nothing captivates the human imagination like the vast unknowns of space. Ancient petroglyphs present renderings of the heavens, proof that we have been gazing up at the stars with wonder for thousands of years. Since then, mankind has systematically expanded our cosmic possibilities. What were once flights of fancy and dreams of science fiction writers have become nearly routine - a continuous human presence orbiting the Earth, probes flying beyond our solar system, and men walking on the moon. NASA and the Russian space program make traveling to the stars look easy, but it has been far from that. Space travel is a sometimes heroic, sometimes humorous, and always dangerous journey fraught with perils around every corner that most of us have never heard of or have long since forgotten. Space Oddities brings these unknown, offbeat, and obscure stories of space to life. From the showmanship and bravado of the earliest known space fatality, German Max Valier, to the first ever indictment under the Espionage Act on an Army officer who leaked secrets concerning the development of early U.S. rockets; and the story of a single loose bolt that defeated the Soviet Union's attempt to beat America to the moon. Author Joe Cuhaj also sheds light on the human aspects of space travel that have remained industry secrets - until now: how the tradition of using a musical playlist to wake astronauts up began, fascinating tales about inventions like the Fischer Space Pen, Omega watches, and even Tang breakfast drink. In addition to fun and entertaining space trivia, Space Oddities also features stories of the profound impact that space travel has had on challenges right here at home, like the effort by civil rights leaders and activists in the 1960s to bring the money from the space program back home to those in need on Earth; NASA's FLATs (First Lady Astronaut Training) program and the 25 women who were selected to become astronauts in 1960, but were denied a chance at flying even after successfully completing the rigorous astronaut training program; and, the animals who many times sacrificed their lives to prove that man could fly in space. Filled with rare and little-known stories, Space Oddities will bring the final frontier to the homes of diehard space readers and armchair astronauts alike.
The SOHO and Cluster missions form a single ESA cornerstone. Yet they observe very different regions in our solar system: the solar atmosphere on one hand and the Earth's magnetosphere on the other. The Ulysses mission provides observations in the third dimension of the heliosphere, and many others add to the picture from the Lagrangian point L1 to the edge of the heliosphere. It is the aim of this ISSI volume to tie these observations together in addressing the topic of Solar Dynamics and its Effects on the Heliosphere and Earth, thus contributing to the International Living With a Star program. The volume starts out with an assessment of the reasons for solar dynamics and how it couples into the heliosphere. The three subsequent sections are each devoted to following one chain of events from the Sun all the way to the Earth's magnetosphere and ionosphere. The final section is devoted to common physical processes occurring both at the Sun and in the magnetosphere.
This NATO AS was the third in the series of Advanced Study Institutes on neutron stars, which started with 'Timing Neutron Stars', held in Qe me near izmir, Turkey (April 1988), followed by 'Neutron Stars, an Interdis ciplinary Subject', held in Agia Pelagia on the island of Crete (September 1990). The first school centered on our main observational access to neu tron stars, i. e. the timing of radio pulsars and accretion powered neutron stars, and on what timing of neutron stars teaches us of their structure and environment. The second school had as its theme the interplay between diverse areas of physics which find interesting, even exotic applications in the extreme conditions of neutron stars and their magnetospheres. As the field has developed, with the number of observed neutron stars rapidly in creasing, and our knowledge of many individual neutron stars getting deeper and more detailed, an evolutionary picture of neutron stars has started to emerge. This led us to choose 'The Lives of the Neutron Stars' as the uni fying theme of this third Advanced Study Institute on neutron stars. Different types of neutron star activity have been proposed to follow one another in stages during the lives of neutron stars in the same basic population; the evolutionary connection between low-mass X-ray binaries and millisecond radio pulsars is perhaps the prime example."
Proceedings of International Meeting held in Trieste, Italy, April 10-13, 1985
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
Since 1967, the main scientific events of the General Assemblies of the International Astronomical Union have been published in the separate series, Highlights of Astronomy. The present Volume 11 presents the major scientific presentations made at the XXIIIrd General Assembly, August 18-30, 1997, in Kyoto, Japan. The two volumes (11A + B) contain the text of the three Invited Discourses as well as the proceedings or extended summaries of the 21 Joint Discussions and two Special Sessions held during the General Assembly.
Here it is, in a nutshell: the history of one genius's most crucial work - discoveries that were to change the face of modern physics. In the early 1900s, Albert Einstein formulated two theories that would forever change the landscape of physics: the Special Theory of Relativity and the General Theory of Relativity. Respected American academic Professor Tai Chow tells us the story of these discoveries. He details the basic ideas of Einstein, including his law of gravitation. Deftly employing his inimitable writing style, he goes on to explain the physics behind black holes, weaving into his account an explanation of the structure of the universe and the science of cosmology.
This book presents novel observational evidence toward detecting and characterizing the products of massive, interacting binary stars. As a majority of massive stars are born in close binary systems, a large number of so-called massive binary interaction products are predicted to exist; however, few have been identified so far. Based on observations with the largest telescopes around the world, equipped with state-of-the-art instrumentation, this book helps to remedy this situation. In her outstanding PhD-thesis Julia Bodensteiner identifies a new class of post-interaction binaries in a short-lived phase just briefly after the initially more massive star has been stripped of part of its envelope. She further provides new evidence for the Be phenomenon to largely result from binary interactions. These results represented a new and testable prediction for the evolution of these stars and opened up a new way forward for identifying hundreds of post-interaction products. Finally, using the MUSE integral field spectrograph at the Very Large Telescope in Chile, the author presents a novel spectroscopic campaign focusing on the 40 Myr-old star cluster NGC 330 in the Small Magellanic Clouds. Combined with photometric observations from the Hubble Space Telescope, the MUSE data allow to characterize the entire massive star population of NGC 330, revealing their multiplicity properties and rotational velocities and providing unique observational constraints on their (binary) evolution history. This is made possible by the developments of novel numerical methods allowing to extract star spectra from the MUSE integral field spectroscopic data and to characterize their properties by the simultaneous comparison of MUSE spectroscopy and Hubble photometry with atmospheric models. This book is a partly re-written version of the author's thesis offering a highly readable coherent text presenting not only new insights into the properties of binary interaction products but also giving students an excellent introduction into the field.
This is the first book to give a comprehensive overview of recent observational and theoretical results on solar wind structures and fluctuations and magnetohydrodynamic waves and turbulence, preference being given to phenomena in the inner heliosphere. Emphasis is placed on the progress made in the past decade in the understanding of the nature and origin of especially small-scale, compressible and incompressible fluctuations. Turbulence models describing the spatial transport and spectral transfer of the fluctuations in the inner heliosphere are discussed. Intermittency of solar wind fluctuations and their statistical distributions are investigated. Studies of the heating and acceleration effects of the turbulence on the background wind are critically surveyed. Finally, open questions concerning the origin, nature and evolution of the fluctuations are listed, and perspectives for future research are outlined. The book is for graduate students and researchers in the field. Other target groups are scientists and professionals interested in space plasma physics and/or MHD turbulence.
This book reproduces the proceedings of the last of a series of "Euroconferences" dedicated to the ongoing near-infrared sky surveys DENIS and 2MASS. It presents the current status of both projects and some of the most outstanding results they have recently achieved in various areas of galactic and extragalactic astronomy. The book contains substantial articles by researchers directly involved in the survey data processing and interpretation which thoroughly describe the astrophysical context in which deep and homogeneous near-infrared surveys will eventually bring about significant breakthrough. They deal with the determination of basic parameters of the galactic structure, the stellar content of the bulge, the construction of unbiased and statistically significant samples of isolated very low mass stars and brown dwarfs, the improvement of the low-end of the stellar luminosity and mass functions, the complete census of young stellar objects in nearby giant molecular clouds, the accurate determination of the luminosity function of late-type giants in the Magellanic Clouds and the structure of the local universe. The analysis of a very small subsample of the full expected set of data promises an extraordinary harvest of discoveries in the 21st century, especially when these data are merged with the results of major related space missions such as Hipparcos and ISO. This book would be of general interest to graduate students in astronomy and professional astronomers involved in most areas of observational astronomy.
ThlS volume contalns a serles of lectures presented at the NATO Advanced Study Instltute on Hlgh Energy Phenomena Around Collapsed Stars, held ln Cargese, CorSlca from September 2 tlll Septemcer 13, 1985. The course was planned ln collaboratlon wlth a SClentlflC Organiz ing Commlttee (C. Cesarsky, France; A. Lyne, U.K.; D. Plnes, USA; J. Trlimper, W. Germany; E. Van den Heuvel, The Netherlands and L. Wolt]er, E.S.O., Mlinlch) and was fully supported by the NATO SClentlflc Affalrs Dlvlsion. It was organized wlth the alm of provldlng students and young researchers with an up-to-date account on the subject of galactlc hlgh energy astrophyslCS and was attended by about 60 researchers from many countrles. The lectures and seminars dld represent a complete coverage of our present knowledge and understandlng of Supernovae, Supernovae Remnants, Pulsars, sources of hlgh energy photons and partlcles. Most of them are reproduced ln thlS volume although unfortunately a few speakers chose not to submlt thelr text Slnce they felt that the materlal was already amply avallable ln the eXlstlng llterature. I wlsh to express my gratltude to the SClentlflc Affalrs Dlvislon of the North Atlantlc Treaty Organlzatlon for the generous support glven to the Instltute and to the lecturers and particlpants who contributed so much to the success of the course."
The astronomer Jan Hendrik Oort (1900-1992) left behind an extensive collection of notes and correspondence, both on his research and on matters that concerned him in a variety of official functions. Upon Oort's death, the collection was augmented by more personal papers, letters, journals, and diaries. The resulting collection forms a rich source of information on many aspects of twentieth-century astronomy, in which Oort played such an important role. The scientific and personal material covers the entire span of time from Oort's early youth until his death. To make these papers accessible to a wide circle of users, the collection has now been catalogued and described; the result is presented in this volume. A name index and a subject index have been added to facilitate access. The inventory is accompanied by a short biographical sketch, and a number of photographs, mostly relating to Oort's career as a scientist. The original papers themselves are archived in the Leiden University Library.
''An atteJDpt has been made to cOll1PlJte the numbers of certain JI10lecules in interstellar space , . . . . A search for the bands of CH, O/{, DR, en and C2 would appear to be proIDising" P Swings and L Rosenfeld Astrophysical Journal 86,483(1937) This may have been the first attempt at modelling interstellar chemistry. As with models today, the methods used lacked reliability, but the speculation was impressive! Mark Twain might well have said of this infant subject "One gets such wholesale returns of conjecture out of such a trifling investment of fact". The detection of unidentified lines around the period that Swings and Rosenfeld were writing provoked much interest, but even the most optimistic speculator could hardly have imagined developments which would occur during the next 50 years. By 1987 about 70 varieties of molecule had been identified in the interstellar and circumstellar regions, They range in complexity from simple diatomics such as H2 and CO to such species as ethanol C2HeDH, acetone (CHs)2CO, and the largest interstellar molecule detected so far, cyano-penta acetylene HC11N, The study of these molecules in astronomy has developed enormously, especially over the last 20 years, and is now codified in the new subject of astrochemistry, That such a variety of chemical species should exist in tenuous regions of the Galaxy is fascinating.
This text should appeal to all researchers who have an interest in Leonid showers. It contains over 40 research papers that present some of the first observational results of the November 1999 Leonid meteor storm, the first storm observed by modern observing techniques. The book is a glimpse of the large amount of information obtained during NASA's Leonid Multi-Instrument Aircraft Campaign and groundbased campaigns throughout the world. It provides an overview on the state of meteor shower research for any professional researcher or amateur meteor observer interested in studies of meteors and meteoroids and their relation to comets, the origin of life on Earth, the satellite impact hazard issue, and upper atmosphere studies of neutral atom chemistry, the formation of meteoric debris, persistent trains, airglow, noctilucent clouds, sprites and elves.
This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes. |
You may like...
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Cosmic Perspective, The - Pearson New…
Jeffrey Bennett, Megan Donahue, …
Paperback
R2,406
Discovery Miles 24 060
The Sun - Beginner's Guide To Our Local…
Dr. Ryan French, Royal Observatory Greenwich, …
Paperback
R194
Discovery Miles 1 940
|