![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
NASA's Genesis mission, launched on August 8, 2001 is the fifth mission in the Discovery series. Genesis addresses questions about the materials and processes involved in the origin of the solar system by providing precise knowledge of solar isotopic and elemental compositions for comparison with the compositions of meteoritic and planetary materials. This book describes the Genesis mission, the solar wind collector materials, the solar wind concentrator and simulations of its performance, the plasma ion and electron instruments, and the way these two instruments are used to determine the solar wind flow regime on board the spacecraft. The book is of interest to all potential users of the data returned by the Genesis mission, to those studying the isotopic and chemical composition of the early solar system whose work will be influenced by the measurements made by Genesis and by all those interested in the design and implementation of space instruments to study space plasmas.
The 1990s are proving to be a very exciting p&iod for high angular resolution astronomy. At radio wavelengths a combination of new array instruments and pow erful imaging algorithms have generated images of unprecedented resolution and quality. In the optical and infrared, the great technical difficulties associated with constructing separated-aperture interferometers have been largely overcome, and many new instruments are now operating or are being developed. As these pro grams start to produce observational results they will be able to draw extensively on the experience gained by the radio-interferometry community. Thus it seemed that the time was ripe for a meeting which would bring together workers from all wavelength ranges to discuss the details of the science and art of "Very High Angular Resolution Imaging" . While the main emphasis of Symposium No. 158 was on high resolution tech niques from the radio, mm-wave, infrared and optical bands, it also provided an opportunity for presentation of astronomical results from these techniques. As well as giving our colleagues from the Northern Hemisphere a break from midwinter, the location of the Symposium in Australia recognised the continuing development of astronomical interferometry in this country, especially the recent completion of the Australia Telescope radio array, and the progress toward com missioning of the Sydney University Stellar Interferometer. A number of the par ticipants visited these instruments during the post-symposium tour."
The publication of this volume coincides with the 55th anni versary of the discovery of the neutron and Landau's suggestion at the time that one could make stars out of the new particles. This year also marks the twenty-fifth anniversary of the detection of Sco X-I, the first known X-ray binary system, and follows by just twenty years Jocelyn Bell Burnell's discovery of that "little bit of scruff" o her chart record that led to the recognition of radio pulsars. As Q. Y. Qu, President of Nanjing University noted in his welcoming address, however, Chinese astronomers have been observing the consequences of neutron star formation for several millenia. It was appropriate, then, that this Symposium, the first Interna tional Astronomical Union meeting ever to be held in the Peoples Republic of China, be devoted to the topic of neutron stars. IAU Symposium Number 125, "The Origin and Evolution of Neutron Stars," was convened on the morning of May 26, 1986 at Nanj ing University, Nanjing, Peoples Republic of China. One hundred and thirty-nine participants from fifteen countries, including over eighty-five scientists who were visiting China for the first time, met each day for the following week to discuss where neutron stars come from, how they evolve, and where they go. The meeting was judged, by unanimous acclaim of the participants, to be a scienti fic, cultural, and culinary success."
I.A.U. symposium No. 110 on VLBI and Compact Radio Sources was held in Bologna, Italy from June 27 to July 1, 1983. 166 participants from 19 countries were registered and 106 invited and contributed papers were registered. The scientific presentations and discussion concentrated on VLBI observation and interpretation of galactic and extragalactic radio sour ces, including topics as diverse as quasars and galactic nuclei, inter stellar masers, pulsars, and astrometry. Geodetic applications and tech nical development were treated only briefly, as these topics have been the subject of other recent international symposia. Since the first VLBI observations in 1967, sensitivity, resolution, and image quality have improved dramatically. Radio maps shown at the symposium were of comparable quality to conventional synthesis maps be ing made at the time of the first VLBI experiments 15 years ago, but with a resolution more than a factor of 1000 better. We wanted to accommodate the large number of contributed papers in this rapidly developing field, but there was inadequate time for normal oral presentations and discussion. We therefore asked that all contrib uted papers be put on display for at least 24 hours prior to a brief oral summary. A question and discussion period followed groups of oral pres entations on the same or similar topic. In this way the opportunity for interactive discussion, not available in conventional poster displays, was preserved."
From the reviews: .."...The book is a very good balance between theory and applications, of analysis and synthesis, keeping always the focus on the comprehension of the physics ruling our planetary system. In summary, this represents both an excellent textbook for students and a fundamental reference, and encyclopedic summary current knowledge, for researchers in the Solar System field." (Alessandro Rossi, Celestial Mechanics and Dynamical Astronomy, 2005)
It was with pleasure that CAUP became for three days the core to the cloud of star formation experts all over the world. Close to the celebration of its 15th anniversary - therefore still in the early stages of institutional evolution - we are proud of our multiple activities in Astronomy: a productive research centre, classi?ed as "Institution of excellence" within the Portuguese research units, but also an "Institution of Public Utility" as recognised by the Government. Fifteen years ago we choose to play a role not only in research, as expected from any research centre but also in the training of the future astronomers and the promotion of science and scienti?c culture. This choice is clearly stated in our by-laws and also in the multiple activities we have carried out since. Along the years we have organized on a regular basis international Workshops similar to "Cores to Clusters." Sometimes we have chosen to organize int- national conferences of a larger size. On other occasions the choice has been for smaller and more informal discussion meetings. Or even doctoral schools with very different objectives. In common all those meetings have always had, besides the formal registered participants, a group of informal participants, our undergraduate students of Astronomy, so eager to be in touch with the real world.
Over the last decade we entered a new exploration phase of solar flare physics, equipped with powerful spacecraft such as Yohkoh, SoHO, and TRACE that pro vide us detail-rich and high-resolution images of solar flares in soft X-rays, hard X -rays, and extreme-ultraviolet wavelengths. Moreover, the large-area and high sensitivity detectors on the Compton GRO spacecraft recorded an unprecedented number of high-energy photons from solar flares that surpasses all detected high energy sources taken together from the rest of the universe, for which CGRO was mainly designed to explore. However, morphological descriptions of these beau tiful pictures and statistical catalogs of these huge archives of solar data would not convey us much understanding of the underlying physics, if we would not set out to quantify physical parameters from these data and would not subject these measurements to theoretical models. Historically, there has always been an unsatisfactory gap between traditional astronomy that dutifully describes the mor phology of observations, and the newer approach of astrophysics, which starts with physical concepts from first principles and analyzes astronomical data with the goal to confirm or disprove theoretical models. In this review we attempt to bridge this yawning gap and aim to present the recent developments in solar flare high-energy physics from a physical point of view, structuring the observations and analysis results according to physical processes, such as particle acceleration, propagation, energy loss, kinematics, and radiation signatures.
These are the proceedings of the Symposium 3 of JENAM 2011 on new scientific challenges posed by the Sun. The topics covered are 1. The unusual sunspot minimum, which poses challenges to the solar dynamo theory 2. The Sun's Terra-Hertz emission, which opens a new observational window 3. Corona wave activity 4. Space weather agents - initiation, propagation, and forecasting In 21 in-depth contributions, the reader will be presented with the latest findings."
Astrobiology is a very broad interdisciplinary field covering the
origin, evolution, distribution, and destiny of life in the
universe, as well as the design and implementation of missions for
solar system exploration. A review covering its complete spectrum
has been missing at a level accessible even to the non-specialist.
It is good to mark the new Millennium by looking back as well as forward. Whatever Shines Should Be Observed looks to the nineteenth century to celebrate the achievements of five distinguished women, four of whom were born in Ireland while the fifth married into an Irish family, who made pioneering contributions to photography, microscopy, astronomy and astrophysics. The women featured came from either aristocratic or professional families. Thus, at first sight, they had many material advantages among their peers. In the ranks of the aristocracy there was often a great passion for learning, and the mansions in which these families lived contained libraries, technical equipment (microscopes and telescopes) and collections from the world of nature. More modest professional households of the time were rich in books, while activities such as observing the stars, collecting plants etc. typically formed an integral part of the children's education. To balance this it was the prevailing philosophy that boys could learn, in addition to basic subjects, mathematics, mechanics, physics, chemistry and classical languages, while girls were channelled into 'polite' subjects like music and needlework. This arrangement allowed boys to progress to University should they so wish, where a range of interesting career choices (including science and engineering) was open to them. Girls, on the other hand, usually received their education at home, often under the tutelage of a governess who would not herself had had any serious contact with scientific or technical subjects. In particular, progress to University was not during most of the nineteenth century an option for women, and access toscientific libraries and institutions was also prohibited. Although those women with aristocratic and professional backgrounds were in a materially privileged position and had an opportunity to 'see' through the activities of their male friends and relatives how professional scientific life was lived, to progress from their places in society to the professions required very special determination. Firstly, they had to individually acquire scientific and technical knowledge, as well as necessary laboratory methodology, without the advantage of formal training. Then, it was necessary to carve out a niche in a particular field, despite the special difficulties attending the publication of scientific books or articles by a woman. There was no easy road to science, or even any well worn track. To achieve recognition was a pioneering activity without discernible ground rules. With the hindsight of history, we recognise that the heroic efforts which the women featured in this volume made to overcome the social constraints that held them back from learning about, and participating in, scientific and technical subjects, had a consequence on a much broader canvas. In addition to what they each achieved professionally they contributed within society to a gradual erosion of those barriers raised against the participation of women in academic life, thereby assisting in allowing University places and professional opportunities to gradually become generally available. It is a privilege to salute and thank the wonderful women of the nineteenth century herein described for what they have contributed to the women of today. William Herschel's famous motto quicquid nitet notandum (whatever shinesshould be observed) applies in a particular way to the luminous quality of their individual lives, and those of us who presently observe their shining, as well as those who now wait in the wings of the coming centuries to emerge upon the scene, can each see a little further by their light.
Lonely Planet Kids' Amazing Night Sky Atlas, the follow up to our bestselling Amazing World Atlas, looks upwards to the skies for a fun- and fact-packed guide to astronomy. Featuring a mixture of photography and illustration, this hardcover book explores both the science of stargazing - explaining what can be seen in the night sky in different parts of the world - and the practicalities, with handy tips such as how to use a telescope. It also covers the background and history of astronomy, travelling around the world to discover the different stories cultures have told about the night sky and the influence the Moon, the stars and the movement of the planets have had on their people. Expert insights come from David Hawksett, a science writer, lecturer and researcher who has previously worked as the Science & Technology Consultant at Guinness World Records and written for Sky at Night Magazine. Perfect for learning at home, in the classroom or being given as a gift, Lonely Planet Kids' Amazing Night Sky Atlas will inspire budding astronomers and excite them for a lifetime of looking to the skies. Contents includes: Introduction to the Night Sky History of stargazing How to use a telescope Constellations Seasons in the Sky The Zodiac Patterns in the Sky - a global guide Planets Stars Supernovas Black Holes Nebulas Meteor Showers Eclipses Night sky legends from around the world About Lonely Planet Kids: Lonely Planet Kids - an imprint of the world's leading travel authority Lonely Planet - published its first book in 2011. Over the past 45 years, Lonely Planet has grown a dedicated global community of travellers, many of whom are now sharing a passion for exploration with their children. Lonely Planet Kids educates and encourages young readers at home and in school to learn about the world with engaging books on culture, sociology, geography, nature, history, space and more. We want to inspire the next generation of global citizens and help kids and their parents to approach life in a way that makes every day an adventure. Come explore!
This book presents novel observational evidence toward detecting and characterizing the products of massive, interacting binary stars. As a majority of massive stars are born in close binary systems, a large number of so-called massive binary interaction products are predicted to exist; however, few have been identified so far. Based on observations with the largest telescopes around the world, equipped with state-of-the-art instrumentation, this book helps to remedy this situation. In her outstanding PhD-thesis Julia Bodensteiner identifies a new class of post-interaction binaries in a short-lived phase just briefly after the initially more massive star has been stripped of part of its envelope. She further provides new evidence for the Be phenomenon to largely result from binary interactions. These results represented a new and testable prediction for the evolution of these stars and opened up a new way forward for identifying hundreds of post-interaction products. Finally, using the MUSE integral field spectrograph at the Very Large Telescope in Chile, the author presents a novel spectroscopic campaign focusing on the 40 Myr-old star cluster NGC 330 in the Small Magellanic Clouds. Combined with photometric observations from the Hubble Space Telescope, the MUSE data allow to characterize the entire massive star population of NGC 330, revealing their multiplicity properties and rotational velocities and providing unique observational constraints on their (binary) evolution history. This is made possible by the developments of novel numerical methods allowing to extract star spectra from the MUSE integral field spectroscopic data and to characterize their properties by the simultaneous comparison of MUSE spectroscopy and Hubble photometry with atmospheric models. This book is a partly re-written version of the author's thesis offering a highly readable coherent text presenting not only new insights into the properties of binary interaction products but also giving students an excellent introduction into the field.
The uses of time in astronomy - from pointing telescopes, coordinating and processing observations, predicting ephemerides, cultures, religious practices, history, businesses, determining Earth orientation, analyzing time-series data and in many other ways - represent a broad sample of how time is used throughout human society and in space. Time and its reciprocal, frequency, is the most accurately measurable quantity and often an important path to the frontiers of science. But the future of timekeeping is changing with the development of optical frequency standards and the resulting challenges of distributing time at ever higher precision, with the possibility of timescales based on pulsars, and with the inclusion of higher-order relativistic effects. The definition of the second will likely be changed before the end of this decade, and its realization will increase in accuracy; the definition of the day is no longer obvious. The variability of the Earth's rotation presents challenges of understanding and prediction. In this symposium speakers took a closer look at time in astronomy, other sciences, cultures, and business as a defining element of modern civilization. The symposium aimed to set the stage for future timekeeping standards, infrastructure, and engineering best practices for astronomers and the broader society. At the same time the program was cognizant of the rich history from Harrison's chronometer to today's atomic clocks and pulsar observations. The theoreticians and engineers of time were brought together with the educators and historians of science, enriching the understanding of time among both experts and the public.
The year: 1660. The date: November 28. Present: The Lord Brouncker, Mr Boyle, Mr Bruce, Sir Robert Moray, Sir Paule Neile, Dr Wilkins, Dr Goddard, Dr Petty, Mr Ball, Mr Hooke, Mr Wren, and Mr Hill. Occasion: A lecture by Mr Wren at Gresham College, United Kingdom. AfterChristopherWrenhaddeliveredhislectureatGreshamCollegeonthathistoric occasion in November 1660, "they did according to the usual manner, withdraw for mutual converse." It was in 1660 that the Royal Society was founded, with 12 persons present. This year, 2010, is thus a special year for scientists worldwide: it celebrates the 350th anniversary of the founding of the Royal Society, whose current President is Martin Rees. One of the enormous challenges facing scientists in the 1600s was the great need fortheclassi cationofobjectstheywerestudying,particularlyinthe eldofbotany. The seeds for classi cation lie in the works of the British naturalist John Ray (1628-1705), who commencing in 1660 with hisCatalogusplantarumcirca Cantabrigiamnascentium (Catalogue of Cambridge Plants) - published in the year in which the Royal Society was founded - and ending with the posthumous publi- tion ofSynopsisMethodicaAviumetPiscium in 1713, pioneered systematic studies on plants, birds, mammals, sh, and insects.
Relativistic Astrophysics and Cosmology offers a succinct and self-contained treatment of general relativity and its application to compact objects, gravitational waves and cosmology. The required mathematical concepts are introduced informally, following geometrical intuition as much as possible. The approach is theoretical, but there is ample discussion of observational aspects and of instrumental issues where appropriate. The book includes such topical issues as the Gravity Probe B mission, interferometer detectors of gravitational waves, and the physics behind the angular power spectrum of the cosmic microwave background (CMB). Written for advanced undergraduates and beginning graduate students in (astro)physics, it is ideally suited for a lecture course and contains 140 exercises with extensive hints. The reader is assumed to be familiar with linear algebra and analysis, ordinary differential equations, special relativity, and basic thermal physics.
The 1994 Cargese Summer Institute on Frontiers in Partide Physics was organized by the Universite Pierre et Marie Curie, Paris (M. Levy), the Ecole Normale Superieure, Paris (J. Iliopoulos), the Katholieke Universiteit Leuven (R. Gastmans), and the Uni- versite Catholique de Louvain (J. -M. Gerard), which, since 1975, have joined their efforts and worked in common. It was the eleventh Summer Institute on High Energy Physics organized jointly at Cargese by three of these universities. Severa! new frontiers in partide physics were thoroughly discussed at this school. the new euergy range in deep-iuelastic electron-proton scattering is beiug In particular, explored by HERA (DESY, Hamburg), and Professor A. De Roeck described the first results from the H1 and Zeus experiments, while Professors A. H. Mueller aud Z. Kuuszt discussed their relevance from the theoretical point of view. Also, the satellite exper- iments offer new possibilities for exploring the links between astrophysics, cosmology, and partide physics. A critica] a. nalysis of these experiments was performed by Pro- fessor B. Sadoulet, and Professor M. Spiro made the connection with the results from earth-based neutrino experiments. Finally, much attentiou was giveu to the latest re- sults from the TEVATRON (Fermilab, USA), showing further evidence for the loug awaited top quark. Professor A. Tollestrup gave a detailed presentation of these results aud discussed their importance for the Standard Model.
Bringing his cosmic perspective to civilization on Earth, Neil deGrasse Tyson, bestselling author of Astrophysics for People in a Hurry, shines new light on the crucial fault lines of our time–war, politics, religion, truth, beauty, gender, race, and tribalism–in a way that stimulates a deeper sense of unity for us all. In a time when our political and cultural perspectives feel more divisive than ever, Tyson provides a much-needed antidote to so much of what divides us, while making a passionate case for the twin engines of enlightenment–a cosmic perspective and the rationality of science. After thinking deeply about how a scientist views the world and about what Earth looks like from space, Tyson has found that terrestrial thoughts change as our brain resets and recalibrates life's priorities, along with the actions we might take in response. As a result, no outlook on culture, society, or civilisation remains untouched. In Starry Messenger, Tyson reveals just how human the enterprise of science is. Far from a cold, unfeeling undertaking, scientific methods, tools, and discoveries have shaped modern civilisation and created the landscape we've built for ourselves on which to live, work, and play. Tyson shows how an infusion of science and rational thinking renders worldviews deeper and more informed than ever before–and exposes unfounded perspectives and unjustified emotions. With crystalline prose and an abundance of evidence, Starry Messenger walks us through the scientific palette that sees and paints the world differently. From lessons on resolving global conflict to reminders of how precious it is to be alive, Tyson reveals, with warmth and eloquence, ten surprising, brilliant, and beautiful truths of human society, informed and enlightened by knowledge of our place in the universe.
This thesis is devoted to ANTARES, the first underwater neutrino telescope in the Mediterranean sea. As the main scientific analysis, a search for high-energy neutrino emission from the region of the Fermi bubbles has been performed using data from the ANTARES detector. A method for the background estimation using off-zones has been developed specially for this measurement. A new likelihood for the limits calculation which treats both observations in the on-zone and in the off-zone in the similar way and also includes different systematic uncertainties has been constructed. The analysis of 2008-2011 ANTARES data yielded a 1.2 excess of events in the Fermi bubble regions, compatible with the no-signal hypothesis. For the optimistic case of no energy cutoff in the flux, the upper limit is within a factor of three of the prediction of the purely hadronic model based on the measured gamma-ray flux. The sensitivity improves as more data are accumulated (more than 65% gain in the sensitivity is expected once 2012-2016 data are added to the analysis).
Much has been said and written about the abilities of modern instrumentation to help solve problems of combustion in engines. In the main, however, the design and fabr ication of combustion chambers continues to be based on extrapolation of exper ience gained from use and rig tests, with little input from advanced techniques such as those based on optical diagnotics. At the same time, it has become increasingly difficult to design better combustion chambers without knowledge of the relevant flow processes. Thus, the future must involve improved understanding which, in turn, will require detailed measurements of velocity, temperature and concentration. The need to narrow the gap between current industrial practice and the acquisition and implementation of improved techniques motivated the organization of the Advanced Study Institute upon which this volume is based. This Institute on Instrumentation for Combustion and Flow in Engines was arranged to display the needs of industry and the possibilities made available by modern instrumentation and, at the same time, to make clear the relative advantages of optical and probe techniques. Held at Vimeiro during the period from 13 to 26 September, 1987, the Institute was attended by 120 participants and 16 invited lecturers.
Recent advances in observational and theoretical efforts in understanding the nature of cataclysmic variables had reached such maturity that there existed a strong, shared feeling among the workers in this field that an international colloquium sponsored by the International Astronomical Union would be timely. To be more specific, this was due primarily to the accumulation of the new data from satellite observatories, such as the International Ultraviolet Observatory (IUE) and EXOSAT, as well as ground-based optical and radio telescopes, and the advances in modeling the putative accretion disks and the thermo-nuclear run-away phenomena in the vinicity of the white dwarf stars in cataclysmic variables. A series of workshops on this subject held in North America over the past several years and that held in Europe in 1985 had all contributed to the advances in our knowledge that led to IAU Colloguium No. 93, held in Bamberg from the 16th to 19th of June 1986. In all, 157 astronomers from 27 countries participated in this conference. Judging from the papers presented, both invited and contributed, and from the enthusiasm seen in discussions, the meeting was indeed a success.
This book contains the proceedings of IAU Symposium No. 151 Evolutionary Processes in Interacting Binary Stars, ' which was held from 5 to 9 August 1991 in Cord ba, Argentina. The primary aim of this conference was to review and evaluate our current understanding of the evolutionary processes in wide variety of interacting binary stars from their births to their deaths. Subjects included the formation of binaries, mass flow and transfer, accretion processes, and binaries with collapsed components, such as novae, X-ray binaries and binary pulsars. As the field covered is both broad and diverse, there were in all thirty-seven invited talks; sixty-two contributed papers were also presented. In addition, these proceedings contain comments from a panel discussion of the major unsolved problems of interacting binary stars.
A brand-new edition of this bestselling Gem, featuring individual charts for all 88 constellations, a star atlas of the entire sky and details of the brightest stars and objects of interest which can be seen with the naked eye, binoculars and small telescopes. Collins Gem Stars provides details of all 88 constellations of the Northern and Southern hemispheres, complete with star charts and a star atlas of the entire sky, ideal for practical observation of the stars throughout the world all year round.
|
You may like...
Proceedings of the 1st International…
Yi-Qing Ni, Xiao-Wei Ye
Hardcover
R5,232
Discovery Miles 52 320
Dynamic Web Application Development…
David Parsons, Simon Stobart
Paperback
Autophagy Networks in Inflammation
Maria Chiara Maiuri, Daniel A deStefano
Hardcover
R4,821
Discovery Miles 48 210
3D Stacked Chips - From Emerging…
Ibrahim (Abe) M Elfadel, Gerhard Fettweis
Hardcover
Interdisciplinary Applications of…
Andres Kecskemethy, Francisco Geu Flores
Hardcover
Handbook of Research on Virtual…
Pavel Zemliansky, James Madison
Hardcover
R6,306
Discovery Miles 63 060
|