![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time
This volume offers a background in modern high spatial resolution techniques, illustrating how such methods have impacted on our understanding of young stars. It provides hands-on insight into observing from space as well as the ground, the use of interferometers at millimeter and infrared wavelengths, image analysis and spectral diagnostic techniques, and High Angular Resolution studies of the inner regions of circumstellar disks that play a fundamental role in jet launching.
Originally published in English in 1973. This volume traces the development of the revolution which so drastically altered man's view of the universe in the sixteenth and seventeenth centuries. The "astronomical revolution" was accomplished in three stages, each linked with the work of one man. With Copernicus, the sun became the centre of the universe. With Kepler, celestial dynamics replaced the kinematics of circles and spheres used by Copernicus. With Borelli the unification of celestial and terrestrial physics was completed by abandonment of the circle in favour the straight line to infinity. Riccardo Giacconi Harvard/Smithsonian Center for Astrophysics The meeting of the High Energy Astrophysics Division of the American Astronomical Society, held in Cambridge, Massachusetts on January 28- 30, 1980, marks the coming of age of X-ray astronomy. In the 18 years since the discovery of the first extrasolar X-ray source, Sco X-l, the field has experienced an extremely rapid instrumentation development culminating with the launch on November 13, 1978 of the Einstein Ob servatory (HEAO-2) which first introduced the use of high resolution imaging telescopes to the study of galactic and extragalactic X-ray sources. The Einstein Observatory instruments can detect sources as faint as 10-7 Sco X-lor about 17 magnitudes fainter. The technological developments in the field have been paralleled by a host of new discoveries: in the early 1960's the detection of 9 "X-ray stars," objects 10 times more luminous in X-rays than the Sun and among the brightest stellar objects at all wavelengths; in the late 1960's and early 1970's the discovery of the nature of such systems which were identified as collapsed stars (neutron stars and black holes) in mass exchange binary systems, and the detection of the first few extragalactic sources."
Maintaining its appealing style and presentation, the Yearbook of Astronomy 2021 contains comprehensive jargon-free monthly sky notes and an authoritative set of sky charts to enable backyard astronomers and sky gazers everywhere to plan their viewing of the year's eclipses, comets, meteor showers and minor planets as well as detailing the phases of the Moon and visibility and locations of the planets throughout the year. To supplement all this is a variety of entertaining and informative articles, a feature for which the Yearbook of Astronomy is known. In the 2021 edition the reader is presented with articles covering a wide range of topics including Male Family Mentors for Women in Astronomy; Henrietta Swan Leavitt and Her Work; Solar Observing; Obsolete Constellations; Lunar Volcanism; Pages From the Past: Collecting Vintage Astronomy Books; M?ori Astronomy in Aotearoa-New Zealand and others. In addition to the above is the first in a series of articles entitled Mission to Mars: Countdown to Building a Brave New World scheduled to appear in the Yearbook of Astronomy throughout the 2020s. These articles will keep the reader fully up to date with the ongoing investigations, research and preparations that are already underway, as well as those in the planning phase, all of which are geared towards sending a manned mission to Mars at or around the end of the decade. We are at the start of what promises to be an exciting journey. The Yearbook of Astronomy made its first appearance way back in 1962, shortly after the dawning of the Space Age. Now well into its sixth decade of production, the Yearbook is rapidly heading for its Diamond Jubilee edition in 2022\. It continues to be essential reading for anyone lured and fascinated by the magic of astronomy and who has a desire to extend their knowledge of the Universe and the wonders it plays host to. The Yearbook of Astronomy is indeed an inspiration to amateur and professional astronomers alike, and warrants a place on the bookshelves of all stargazers and watchers of the Universe.
IAU symposium 165 'Compact Stars in Binaries' was held from 15 through 19 August 1994, as part of the 22nd General Assembly of the IAU in The Hague. The symposium, supported by IAU Commissions 35,37,44 and 48, and co-sponsored by Commission 42, was attended by about 400 to 500 participants. This symposium received support from: - The International Astronomical Union; - The Royal Netherlands Academy of Sciences; - The Netherlands Ministery of Education and Science; - The Leids Kerkhoven Bosscha Fonds; - The Stichting Fysica. The field of compact stars in binaries is one of the most active areas of present-day astrophysics. An absolute highlight of the last few years was the 1993 Nobel Prize of physics, awarded to Taylor and Hulse for their discovery of the binary pulsar PSR 1913+ 16, and the measurement of the orbital decay of this system due to the emission of gravitational waves. The aim of the organizers of the symposium was to present an overview of the most significant observational discoveries of the past decade, in com bination with a review of the most important theoretical developments. We were very happy that most of the world's leading experts in observation and theory were present at the symposium to review the various aspects of the subject. The contents of their oral presentations are now published in the form of these proceedings, which we expect to become an important source of reference for the coming years."
Proceedings of International Meeting held in Trieste, Italy, April 10-13, 1985
This book summarizes the gathering of information on and the growing understanding of M33 from the 1920s, when Hubble first determined its true nature, to the 21st century, when the Hubble Telescope probed deeply into its many secrets. With its regular symmetrical spiral structure, and its being not tilted too much and near enough to allow detailed studies of its stars, M33 is well-suited for the study of a typical spiral galaxy. In this work, Paul Hodge places current research on M33 (and similar galaxies) in both historical and global perspectives. The book is written in a language accessible for specialists and non-specialists, for professional and amateur astronomers, for scientists and the curious public and, most importantly, for students.
This NATO AS was the third in the series of Advanced Study Institutes on neutron stars, which started with 'Timing Neutron Stars', held in Qe me near izmir, Turkey (April 1988), followed by 'Neutron Stars, an Interdis ciplinary Subject', held in Agia Pelagia on the island of Crete (September 1990). The first school centered on our main observational access to neu tron stars, i. e. the timing of radio pulsars and accretion powered neutron stars, and on what timing of neutron stars teaches us of their structure and environment. The second school had as its theme the interplay between diverse areas of physics which find interesting, even exotic applications in the extreme conditions of neutron stars and their magnetospheres. As the field has developed, with the number of observed neutron stars rapidly in creasing, and our knowledge of many individual neutron stars getting deeper and more detailed, an evolutionary picture of neutron stars has started to emerge. This led us to choose 'The Lives of the Neutron Stars' as the uni fying theme of this third Advanced Study Institute on neutron stars. Different types of neutron star activity have been proposed to follow one another in stages during the lives of neutron stars in the same basic population; the evolutionary connection between low-mass X-ray binaries and millisecond radio pulsars is perhaps the prime example."
Since 1967, the main scientific events of the General Assemblies of the International Astronomical Union have been published in the separate series, Highlights of Astronomy. The present Volume 11 presents the major scientific presentations made at the XXIIIrd General Assembly, August 18-30, 1997, in Kyoto, Japan. The two volumes (11A + B) contain the text of the three Invited Discourses as well as the proceedings or extended summaries of the 21 Joint Discussions and two Special Sessions held during the General Assembly.
This is the first book to give a comprehensive overview of recent observational and theoretical results on solar wind structures and fluctuations and magnetohydrodynamic waves and turbulence, preference being given to phenomena in the inner heliosphere. Emphasis is placed on the progress made in the past decade in the understanding of the nature and origin of especially small-scale, compressible and incompressible fluctuations. Turbulence models describing the spatial transport and spectral transfer of the fluctuations in the inner heliosphere are discussed. Intermittency of solar wind fluctuations and their statistical distributions are investigated. Studies of the heating and acceleration effects of the turbulence on the background wind are critically surveyed. Finally, open questions concerning the origin, nature and evolution of the fluctuations are listed, and perspectives for future research are outlined. The book is for graduate students and researchers in the field. Other target groups are scientists and professionals interested in space plasma physics and/or MHD turbulence.
The NATO ASI held in the Geophysical Institute, University of Alaska Fairbanks, June 17-28, 1991 was, we believe, the first attempt to bring together geoscientists from all the disciplines related to the solar system where fluid flow is a fundamental phenomenon. The various aspects of flow discussed at the meeting ranged from the flow of ice in glaciers, through motion of the solar wind, to the effects of flow in the Earth's mantle as seen in surface phenomena. A major connecting theme is the role played by convection. For a previous attempt to review the various ways in which convection plays an important role in natural phenomena one must go back to an early comprehensive study by 1. Wasiutynski in "Astro physica Norvegica" vo1. 4, 1946. This work, little known now perhaps, was a pioneering study. In understanding the evolution of bodies of the solar system, from accretion to present-day processes, ranging from interplanetary plasma to fluid cores, the understanding of flow hydrodynamics is essentia1. From the large scale in planetary atmospheres to geological processes, such as those seen in magma chambers on the Earth, one is dealing with thermal or chemical convection. Count Rumford, the founder of the Royal Institution, studied thermal convection experimentally and realized its practical importance in domestic contexts."
The astronomer Jan Hendrik Oort (1900-1992) left behind an extensive collection of notes and correspondence, both on his research and on matters that concerned him in a variety of official functions. Upon Oort's death, the collection was augmented by more personal papers, letters, journals, and diaries. The resulting collection forms a rich source of information on many aspects of twentieth-century astronomy, in which Oort played such an important role. The scientific and personal material covers the entire span of time from Oort's early youth until his death. To make these papers accessible to a wide circle of users, the collection has now been catalogued and described; the result is presented in this volume. A name index and a subject index have been added to facilitate access. The inventory is accompanied by a short biographical sketch, and a number of photographs, mostly relating to Oort's career as a scientist. The original papers themselves are archived in the Leiden University Library.
The SOHO and Cluster missions form a single ESA cornerstone. Yet they observe very different regions in our solar system: the solar atmosphere on one hand and the Earth's magnetosphere on the other. The Ulysses mission provides observations in the third dimension of the heliosphere, and many others add to the picture from the Lagrangian point L1 to the edge of the heliosphere. It is the aim of this ISSI volume to tie these observations together in addressing the topic of Solar Dynamics and its Effects on the Heliosphere and Earth, thus contributing to the International Living With a Star program. The volume starts out with an assessment of the reasons for solar dynamics and how it couples into the heliosphere. The three subsequent sections are each devoted to following one chain of events from the Sun all the way to the Earth's magnetosphere and ionosphere. The final section is devoted to common physical processes occurring both at the Sun and in the magnetosphere.
Earth as an Evolving Planetary System, Fourth Edition discusses key topics dealing with the evolution and interaction through time of Earth's crust, mantle, core, atmosphere, hydrosphere, and biosphere. It addresses the questions of why Earth is unique among planets of the solar system, and how the various subsystems in the planet have interacted over 4.6 billion years in the habitable planet that we live on. This new edition includes over 100 new pages of material, data, and images and is a key reference for students and researchers in Earth and planetary sciences. Earth as an Evolving Planetary System, Fourth Edition includes new material that has become available since the third edition, including new sections on the Mid-lithosphere discontinuity, geoneutrinos, mantle oxidation, continental emergence, Earth cycles (new chapter) and recycling processes, the evolution of Earth from a stagnant lid to a plate tectonic regime, the controversy over how the continents have grown, when plate tectonics began, and exoplanets.
This book addresses a broad range of problems related to observed manifestations of chaotic motions in galactic and stellar objects, by invoking basic theory, numerical modeling, and observational evidence. For the first time, methods of stochastic dynamics are applied to actually observed astronomical objects, e.g. the gaseous disc of the spiral galaxy NGC 3631. In the latter case, the existence of chaotic trajectories in the boundary of giant vortices was recently found by the calculation of the Lyapunov characteristic number of these trajectories. The reader will find research results on the peculiarities of chaotic system behaviour; a study of the integrals of motion in self-consistent systems; numerical modeling results of the evolution process of disk systems involving resonance excitation of the density waves in spiral galaxies; a review of specific formations in stars and high-energy sources demonstrating their stochastic nature; a discussion of the peculiarities of the precessional motion of the accretion disk and relativistic jets in the double system SS 433; etc. This book stands out as the first one that deals with the problem of chaos in real astrophysical objects. It is intended for graduate and post-graduate students in the fields of non-linear dynamics, astrophysics, planetary and space physics; specifically for those dealing with computer modeling of the relevant processes.
Proceedings of the 17th General Assembly, Montreal, 1979
''An atteJDpt has been made to cOll1PlJte the numbers of certain JI10lecules in interstellar space , . . . . A search for the bands of CH, O/{, DR, en and C2 would appear to be proIDising" P Swings and L Rosenfeld Astrophysical Journal 86,483(1937) This may have been the first attempt at modelling interstellar chemistry. As with models today, the methods used lacked reliability, but the speculation was impressive! Mark Twain might well have said of this infant subject "One gets such wholesale returns of conjecture out of such a trifling investment of fact". The detection of unidentified lines around the period that Swings and Rosenfeld were writing provoked much interest, but even the most optimistic speculator could hardly have imagined developments which would occur during the next 50 years. By 1987 about 70 varieties of molecule had been identified in the interstellar and circumstellar regions, They range in complexity from simple diatomics such as H2 and CO to such species as ethanol C2HeDH, acetone (CHs)2CO, and the largest interstellar molecule detected so far, cyano-penta acetylene HC11N, The study of these molecules in astronomy has developed enormously, especially over the last 20 years, and is now codified in the new subject of astrochemistry, That such a variety of chemical species should exist in tenuous regions of the Galaxy is fascinating.
Here it is, in a nutshell: the history of one genius's most crucial work - discoveries that were to change the face of modern physics. In the early 1900s, Albert Einstein formulated two theories that would forever change the landscape of physics: the Special Theory of Relativity and the General Theory of Relativity. Respected American academic Professor Tai Chow tells us the story of these discoveries. He details the basic ideas of Einstein, including his law of gravitation. Deftly employing his inimitable writing style, he goes on to explain the physics behind black holes, weaving into his account an explanation of the structure of the universe and the science of cosmology.
The Almagest, by the Greek astronomer and mathematician Ptolemy, is
the most important surviving treatise on early mathematical
astronomy, offering historians valuable insight into the astronomy
and mathematics of the ancient world.
String Theory is our current best candidate for the unification of all fundamental forces, including gravity, in a consistent quantum framework. In this collection of lectures delivered at the Carg se Summer School "String Theory: from Gauge Interactions to Cosmology'', world leading experts provide an up-to-date survey of the latest developments in this topic, including the gauge/gravity correspondence, superstring cosmology and cosmic strings, topological string theory and matrix models, physics beyond the standard model and the landscape of vacua of string theory, conformal field theory and critical phenomena in statistical mechanics. Many more topics are also discussed in shorter contributions by School participants. Written with an emphasis on pedagogy, this volume will be a invaluable resource to students and experts alike.
This text should appeal to all researchers who have an interest in Leonid showers. It contains over 40 research papers that present some of the first observational results of the November 1999 Leonid meteor storm, the first storm observed by modern observing techniques. The book is a glimpse of the large amount of information obtained during NASA's Leonid Multi-Instrument Aircraft Campaign and groundbased campaigns throughout the world. It provides an overview on the state of meteor shower research for any professional researcher or amateur meteor observer interested in studies of meteors and meteoroids and their relation to comets, the origin of life on Earth, the satellite impact hazard issue, and upper atmosphere studies of neutral atom chemistry, the formation of meteoric debris, persistent trains, airglow, noctilucent clouds, sprites and elves.
The interstellarum Deep Sky Atlas set a new high standard for modern celestial cartography. The same team now presents the interstellarum Deep Sky Guide, its unique observing companion. Taking an intuitive visual approach, for each spread of the Atlas, the Guide focuses on carefully selected objects, either as colored composite POSS plates or through the authors' own eyepiece sketches. They allow you to estimate the visibility of features in the telescope while planning observations. Stars and other objects in the vicinity are highlighted, so they also serve as finder charts at night. An index map on each spread allows you to quickly find each object's location in the Atlas. The interstellarum Deep Sky Guide takes all the hassle out of preparing for observing sessions - there's no need to print star charts or photos. Simply grab your Atlas and your Guide, and go observe! This Field Edition is produced using waterproof materials.
Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun??'s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the appendices facilitate a more thorough command of the physics involved. |
You may like...
Energy Efficiency in Data Centers and…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R4,212
Discovery Miles 42 120
Lore Of Nutrition - Challenging…
Tim Noakes, Marika Sboros
Paperback
(4)
|